SoPlex Doxygen Documentation
clufactor.cpp
Go to the documentation of this file.
1 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
2 /* */
3 /* This file is part of the class library */
4 /* SoPlex --- the Sequential object-oriented simPlex. */
5 /* */
6 /* Copyright (C) 1996-2012 Konrad-Zuse-Zentrum */
7 /* fuer Informationstechnik Berlin */
8 /* */
9 /* SoPlex is distributed under the terms of the ZIB Academic Licence. */
10 /* */
11 /* You should have received a copy of the ZIB Academic License */
12 /* along with SoPlex; see the file COPYING. If not email to soplex@zib.de. */
13 /* */
14 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
15 
16 #include <assert.h>
17 
18 #include "spxdefines.h"
19 #include "clufactor.h"
20 #include "cring.h"
21 #include "spxalloc.h"
22 #include "exceptions.h"
23 
24 namespace soplex
25 {
26 
27 /* This number is used to decide wether a value is zero
28  * or was explicitly set to zero.
29  */
30 #define MARKER 1e-100
31 
32 static const Real verySparseFactor = 0.001;
33 static const Real verySparseFactor4right = 0.2;
34 static const Real verySparseFactor4left = 0.1;
35 
36 /* generic heap management */
37 static void enQueueMax( int* heap, int* size, int elem )
38 {
39  int i, j;
40 
41  j = ( *size )++;
42 
43  while ( j > 0 )
44  {
45  i = ( j - 1 ) / 2;
46 
47  if ( elem > heap[i] )
48  {
49  heap[j] = heap[i];
50  j = i;
51  }
52  else
53  break;
54  }
55 
56  heap[j] = elem;
57 
58 #ifdef DEBUGGING
59 // no NDEBUG define, since this block is really expensive
60  for ( i = 1; i < *size; ++i )
61  for ( j = 0; j < i; ++j )
62  assert( heap[i] != heap[j] );
63 
64 #endif /* DEBUGGING */
65 }
66 
67 static int deQueueMax( int* heap, int* size )
68 {
69  int e, elem;
70  int i, j, s;
71  int e1, e2;
72 
73  elem = *heap;
74  e = heap[s = --( *size )];
75  --s;
76 
77  for ( j = 0, i = 1; i < s; i = 2 * j + 1 )
78  {
79  e1 = heap[i];
80  e2 = heap[i + 1];
81 
82  if ( e1 > e2 )
83  {
84  if ( e < e1 )
85  {
86  heap[j] = e1;
87  j = i;
88  }
89  else
90  {
91  heap[j] = e;
92  return elem;
93  }
94  }
95  else
96  {
97  if ( e < e2 )
98  {
99  heap[j] = e2;
100  j = i + 1;
101  }
102  else
103  {
104  heap[j] = e;
105  return elem;
106  }
107  }
108  }
109 
110  if ( i < *size && e < heap[i] )
111  {
112  heap[j] = heap[i];
113  j = i;
114  }
115 
116  heap[j] = e;
117 
118  return elem;
119 }
120 
121 static void enQueueMin( int* heap, int* size, int elem )
122 {
123  int i, j;
124 
125  j = ( *size )++;
126 
127  while ( j > 0 )
128  {
129  i = ( j - 1 ) / 2;
130 
131  if ( elem < heap[i] )
132  {
133  heap[j] = heap[i];
134  j = i;
135  }
136  else
137  break;
138  }
139 
140  heap[j] = elem;
141 
142 #ifdef DEBUGGING
143 // no NDEBUG define, since this block is really expensive
144  for ( i = 1; i < *size; ++i )
145  for ( j = 0; j < i; ++j )
146  assert( heap[i] != heap[j] );
147 
148 #endif /* DEBUGGING */
149 }
150 
151 static int deQueueMin( int* heap, int* size )
152 {
153  int e, elem;
154  int i, j, s;
155  int e1, e2;
156 
157  elem = *heap;
158  e = heap[s = --( *size )];
159  --s;
160 
161  for ( j = 0, i = 1; i < s; i = 2 * j + 1 )
162  {
163  e1 = heap[i];
164  e2 = heap[i + 1];
165 
166  if ( e1 < e2 )
167  {
168  if ( e > e1 )
169  {
170  heap[j] = e1;
171  j = i;
172  }
173  else
174  {
175  heap[j] = e;
176  return elem;
177  }
178  }
179  else
180  {
181  if ( e > e2 )
182  {
183  heap[j] = e2;
184  j = i + 1;
185  }
186  else
187  {
188  heap[j] = e;
189  return elem;
190  }
191  }
192  }
193 
194  if ( i < *size && e > heap[i] )
195  {
196  heap[j] = heap[i];
197  j = i;
198  }
199 
200  heap[j] = e;
201 
202  return elem;
203 }
204 
205 /************************************************************/
207  : s_mark( 0 )
208  , s_max( 0 )
209  , s_cact( 0 )
210  , stage( 0 )
211  , pivot_col( 0 )
212  , pivot_colNZ( 0 )
213  , pivot_row( 0 )
214  , pivot_rowNZ( 0 )
215 {}
216 
217 void CLUFactor::Temp::init( int p_dim )
218 {
219  spx_realloc( s_max, p_dim );
220  spx_realloc( s_cact, p_dim );
221  spx_realloc( s_mark, p_dim );
222  stage = 0;
223 }
224 
226 {
227  if ( s_mark != 0 )
228  spx_free( s_mark );
229 
230  if ( s_cact != 0 )
231  spx_free( s_cact );
232 
233  if ( s_max != 0 )
234  spx_free( s_max );
235 
236  if ( pivot_col != 0 )
237  spx_free( pivot_col );
238 
239  if ( pivot_colNZ != 0 )
240  spx_free( pivot_colNZ );
241 
242  if ( pivot_row != 0 )
243  spx_free( pivot_row );
244 
245  if ( pivot_rowNZ != 0 )
246  spx_free( pivot_rowNZ );
247 }
248 
250 {
251  clear();
252 }
253 
254 /************************************************************/
256 {
257  METHOD( "CLUFactor::initPerm()" );
258 
259  for ( int i = 0; i < thedim; ++i )
260  row.orig[i] = row.perm[i] = col.orig[i] = col.perm[i] = -1;
261 }
262 
263 /*****************************************************************************/
264 
265 void CLUFactor::setPivot( const int p_stage,
266  const int p_col,
267  const int p_row,
268  const Real val )
269 {
270  METHOD( "CLUFactor::setPivot()" );
271  assert( row.perm[p_row] < 0 );
272  assert( col.perm[p_col] < 0 );
273 
274  row.orig[p_stage] = p_row;
275  col.orig[p_stage] = p_col;
276  row.perm[p_row] = p_stage;
277  col.perm[p_col] = p_stage;
278  diag[p_row] = REAL( 1.0 ) / val;
279 
280  if ( fabs( diag[p_row] ) > maxabs )
281  maxabs = fabs( diag[p_row] );
282 }
283 
284 /*****************************************************************************/
285 /*
286  * Perform garbage collection on row file
287  */
289 {
290  METHOD( "CLUFactor::packRows()" );
291  int n, i, j, l_row;
292  Dring *ring, *list;
293 
294  int *l_ridx = u.row.idx;
295  Real *l_rval = u.row.val;
296  int *l_rlen = u.row.len;
297  int *l_rmax = u.row.max;
298  int *l_rbeg = u.row.start;
299 
300  n = 0;
301  list = &( u.row.list );
302 
303  for ( ring = list->next; ring != list; ring = ring->next )
304  {
305  l_row = ring->idx;
306 
307  if ( l_rbeg[l_row] != n )
308  {
309  do
310  {
311  l_row = ring->idx;
312  i = l_rbeg[l_row];
313  assert( l_rlen[l_row] <= l_rmax[l_row] );
314  l_rbeg[l_row] = n;
315  l_rmax[l_row] = l_rlen[l_row];
316  j = i + l_rlen[l_row];
317 
318  for ( ; i < j; ++i, ++n )
319  {
320  assert( n <= i );
321  l_ridx[n] = l_ridx[i];
322  l_rval[n] = l_rval[i];
323  }
324 
325  ring = ring->next;
326  }
327  while ( ring != list );
328 
329  goto terminatePackRows;
330  }
331 
332  n += l_rlen[l_row];
333 
334  l_rmax[l_row] = l_rlen[l_row];
335  }
336 
337 terminatePackRows:
338 
339  u.row.max[thedim] = 0;
340  u.row.used = n;
341 }
342 
343 /*****************************************************************************/
344 /*
345  * Perform garbage collection on column file
346  */
348 {
349  METHOD( "CLUFactor::forestPackColumns()" );
350  int n, i, j, colno;
351  Dring *ring, *list;
352 
353  Real *cval = u.col.val;
354  int *cidx = u.col.idx;
355  int *clen = u.col.len;
356  int *cmax = u.col.max;
357  int *cbeg = u.col.start;
358 
359  n = 0;
360  list = &u.col.list;
361 
362  for ( ring = list->next; ring != list; ring = ring->next )
363  {
364  colno = ring->idx;
365 
366  if ( cbeg[colno] != n )
367  {
368  do
369  {
370  colno = ring->idx;
371  i = cbeg[colno];
372  cbeg[colno] = n;
373  cmax[colno] = clen[colno];
374  j = i + clen[colno];
375 
376  for ( ; i < j; ++i )
377  {
378  cval[n] = cval[i];
379  cidx[n++] = cidx[i];
380  }
381 
382  ring = ring->next;
383  }
384  while ( ring != list );
385 
386  goto terminatePackColumns;
387  }
388 
389  n += clen[colno];
390 
391  cmax[colno] = clen[colno];
392  }
393 
394 terminatePackColumns :
395 
396  u.col.used = n;
397  u.col.max[thedim] = 0;
398 }
399 
400 /*
401  * Make row of fac large enough to hold len nonzeros.
402  */
403 void CLUFactor::remaxRow( int p_row, int len )
404 {
405  METHOD( "CLUFactor::remaxRow()" );
406  assert( u.row.max[p_row] < len );
407 
408  if ( u.row.elem[p_row].next == &( u.row.list ) ) /* last in row file */
409  {
410  int delta = len - u.row.max[p_row];
411 
412  if ( delta > u.row.size - u.row.used )
413  {
414  packRows();
415  delta = len - u.row.max[p_row]; // packRows() changes u.row.max[] !
416 
417  if ( u.row.size < rowMemMult * u.row.used + len )
418  minRowMem( 2 * u.row.used + len );
419 
420  /* minRowMem(rowMemMult * u.row.used + len); */
421  }
422 
423  assert( delta <= u.row.size - u.row.used
424 
425  && "ERROR: could not allocate memory for row file" );
426 
427  u.row.used += delta;
428  u.row.max[p_row] = len;
429  }
430  else /* row must be moved to end of row file */
431  {
432  int i, j, k;
433  int *idx;
434  Real *val;
435  Dring *ring;
436 
437  if ( len > u.row.size - u.row.used )
438  {
439  packRows();
440 
441  if ( u.row.size < rowMemMult * u.row.used + len )
442  minRowMem( 2 * u.row.used + len );
443 
444  /* minRowMem(rowMemMult * u.row.used + len);*/
445  }
446 
447  assert( len <= u.row.size - u.row.used
448 
449  && "ERROR: could not allocate memory for row file" );
450 
451  j = u.row.used;
452  i = u.row.start[p_row];
453  k = u.row.len[p_row] + i;
454  u.row.start[p_row] = j;
455  u.row.used += len;
456 
457  u.row.max[u.row.elem[p_row].prev->idx] += u.row.max[p_row];
458  u.row.max[p_row] = len;
459  removeDR( u.row.elem[p_row] );
460  ring = u.row.list.prev;
461  init2DR( u.row.elem[p_row], *ring );
462 
463  idx = u.row.idx;
464  val = u.row.val;
465 
466  for ( ; i < k; ++i, ++j )
467  {
468  val[j] = val[i];
469  idx[j] = idx[i];
470  }
471  }
472 
473  assert( u.row.start[u.row.list.prev->idx] + u.row.max[u.row.list.prev->idx]
474 
475  == u.row.used );
476 }
477 
478 /*************************************************************************/
479 /*
480  * Perform garbage collection on column file
481  */
483 {
484  METHOD( "CLUFactor::packColumns()" );
485  int n, i, j, l_col;
486  Dring *ring, *list;
487 
488  int *l_cidx = u.col.idx;
489  int *l_clen = u.col.len;
490  int *l_cmax = u.col.max;
491  int *l_cbeg = u.col.start;
492 
493  n = 0;
494  list = &( u.col.list );
495 
496  for ( ring = list->next; ring != list; ring = ring->next )
497  {
498  l_col = ring->idx;
499 
500  if ( l_cbeg[l_col] != n )
501  {
502  do
503  {
504  l_col = ring->idx;
505  i = l_cbeg[l_col];
506  l_cbeg[l_col] = n;
507  l_cmax[l_col] = l_clen[l_col];
508  j = i + l_clen[l_col];
509 
510  for ( ; i < j; ++i )
511  l_cidx[n++] = l_cidx[i];
512 
513  ring = ring->next;
514  }
515  while ( ring != list );
516 
517  goto terminatePackColumns;
518  }
519 
520  n += l_clen[l_col];
521 
522  l_cmax[l_col] = l_clen[l_col];
523  }
524 
525 terminatePackColumns :
526 
527  u.col.used = n;
528  u.col.max[thedim] = 0;
529 }
530 
531 /*
532  * Make column col of fac large enough to hold len nonzeros.
533  */
534 void CLUFactor::remaxCol( int p_col, int len )
535 {
536  METHOD( "CLUFactor::remaxCol()" );
537  assert( u.col.max[p_col] < len );
538 
539  if ( u.col.elem[p_col].next == &( u.col.list ) ) /* last in column file */
540  {
541  int delta = len - u.col.max[p_col];
542 
543  if ( delta > u.col.size - u.col.used )
544  {
545  packColumns();
546  delta = len - u.col.max[p_col];
547 
548  if ( u.col.size < colMemMult * u.col.used + len )
549  minColMem( 2 * u.col.used + len );
550 
551  /* minColMem(colMemMult * u.col.used + len); */
552  }
553 
554  assert( delta <= u.col.size - u.col.used
555 
556  && "ERROR: could not allocate memory for column file" );
557 
558  u.col.used += delta;
559  u.col.max[p_col] = len;
560  }
561 
562  else /* column must be moved to end of column file */
563  {
564  int i, j, k;
565  int *idx;
566  Dring *ring;
567 
568  if ( len > u.col.size - u.col.used )
569  {
570  packColumns();
571 
572  if ( u.col.size < colMemMult * u.col.used + len )
573  minColMem( 2 * u.col.used + len );
574 
575  /* minColMem(colMemMult * u.col.used + len); */
576  }
577 
578  assert( len <= u.col.size - u.col.used
579 
580  && "ERROR: could not allocate memory for column file" );
581 
582  j = u.col.used;
583  i = u.col.start[p_col];
584  k = u.col.len[p_col] + i;
585  u.col.start[p_col] = j;
586  u.col.used += len;
587 
588  u.col.max[u.col.elem[p_col].prev->idx] += u.col.max[p_col];
589  u.col.max[p_col] = len;
590  removeDR( u.col.elem[p_col] );
591  ring = u.col.list.prev;
592  init2DR( u.col.elem[p_col], *ring );
593 
594  idx = u.col.idx;
595 
596  for ( ; i < k; ++i )
597  idx[j++] = idx[i];
598  }
599 }
600 
601 /*
602  * Make column col of fac large enough to hold len nonzeros.
603  */
604 void CLUFactor::forestReMaxCol( int p_col, int len )
605 {
606  METHOD( "CLUFactor::forestReMaxCol()" );
607  assert( u.col.max[p_col] < len );
608 
609  if ( u.col.elem[p_col].next == &( u.col.list ) ) /* last in column file */
610  {
611  int delta = len - u.col.max[p_col];
612 
613  if ( delta > u.col.size - u.col.used )
614  {
616  delta = len - u.col.max[p_col];
617 
618  if ( u.col.size < colMemMult * u.col.used + len )
619  forestMinColMem( int( colMemMult * u.col.used + len ) );
620  }
621 
622  assert( delta <= u.col.size - u.col.used
623 
624  && "ERROR: could not allocate memory for column file" );
625 
626  u.col.used += delta;
627  u.col.max[p_col] = len;
628  }
629 
630  else /* column must be moved to end of column file */
631  {
632  int i, j, k;
633  int *idx;
634  Real *val;
635  Dring *ring;
636 
637  if ( len > u.col.size - u.col.used )
638  {
640 
641  if ( u.col.size < colMemMult * u.col.used + len )
642  forestMinColMem( int( colMemMult * u.col.used + len ) );
643  }
644 
645  assert( len <= u.col.size - u.col.used
646 
647  && "ERROR: could not allocate memory for column file" );
648 
649  j = u.col.used;
650  i = u.col.start[p_col];
651  k = u.col.len[p_col] + i;
652  u.col.start[p_col] = j;
653  u.col.used += len;
654 
655  u.col.max[u.col.elem[p_col].prev->idx] += u.col.max[p_col];
656  u.col.max[p_col] = len;
657  removeDR( u.col.elem[p_col] );
658  ring = u.col.list.prev;
659  init2DR( u.col.elem[p_col], *ring );
660 
661  idx = u.col.idx;
662  val = u.col.val;
663 
664  for ( ; i < k; ++i )
665  {
666  val[j] = val[i];
667  idx[j++] = idx[i];
668  }
669  }
670 }
671 
672 /*****************************************************************************/
673 
674 /**
675  * \brief Performs the Forrest-Tomlin update of the LU factorization.
676  *
677  * BH: I suppose this is implemented as described in UH Suhl, LM Suhl: A fast LU
678  * update for linear programming, Annals of OR 43, p. 33-47, 1993.
679  *
680  * @param p_col Index of basis column to replace.
681  * @param p_work Dense vector to substitute in the basis.
682  * @param num Number of nonzeros in vector represented by p_work.
683  * @param nonz Indices of nonzero elements in vector p_work.
684  *
685  * The parameters num and nonz are used for the following optimization: If both
686  * are nonzero, indices of the nonzero elements provided in nonz (num giving
687  * their number) allow to access only those nonzero entries. Otherwise we have
688  * to go through the entire dense vector element by element.
689  *
690  * After copying p_work into U, p_work is used to expand the row r, which is
691  * needed to restore the triangular structure of U.
692  *
693  * Also num and nonz are used to maintain a heap if there are only very few
694  * nonzeros to be eliminated. This is plainly wrong if the method is called with
695  * nonz==0, see todo at the corresponding place below.
696  *
697  * @throw SPxStatusException if the loaded matrix is singular
698  *
699  * @todo Use an extra member variable as a buffer for working with the dense
700  * row instead of misusing p_work. I think that should be as efficient and
701  * much cleaner.
702  */
703 
704 void CLUFactor::forestUpdate( int p_col, Real* p_work, int num, int *nonz )
705 {
706  METHOD( "CLUFactor::forestUpdate()" );
707  int i, j, k, h, m, n;
708  int ll, c, r, rowno;
709  Real x;
710 
711  Real *lval;
712  int *lidx;
713  int *lbeg = l.start;
714 
715  Real *cval = u.col.val;
716  int *cidx = u.col.idx;
717  int *cmax = u.col.max;
718  int *clen = u.col.len;
719  int *cbeg = u.col.start;
720 
721  Real *rval = u.row.val;
722  int *ridx = u.row.idx;
723  int *rmax = u.row.max;
724  int *rlen = u.row.len;
725  int *rbeg = u.row.start;
726 
727  int *rperm = row.perm;
728  int *rorig = row.orig;
729  int *cperm = col.perm;
730  int *corig = col.orig;
731 
732  Real l_maxabs = maxabs;
733  int dim = thedim;
734 
735  /* Remove column p_col from U
736  */
737  j = cbeg[p_col];
738  i = clen[p_col];
739  nzCnt -= i;
740 
741  for ( i += j - 1; i >= j; --i )
742  {
743  m = cidx[i]; // remove column p_col from row m
744  k = rbeg[m];
745  h = --( rlen[m] ) + k; // decrease length of row m
746 
747  while ( ridx[k] != p_col )
748  ++k;
749 
750  assert( k <= h ); // k is the position of p_col, h is last position
751 
752  ridx[k] = ridx[h]; // store last index at the position of p_col
753 
754  rval[k] = rval[h];
755  }
756 
757  /* Insert new vector column p_col thereby determining the highest permuted
758  * row index r.
759  *
760  * Distinguish between optimized call (num > 0, nonz != 0) and
761  * non-optimized one.
762  */
763  assert( num ); // otherwise the assert( nonz != 0 ) below should fail
764 
765  if ( num )
766  {
767  // Optimized call.
768  assert( nonz != 0 );
769 
770  clen[p_col] = 0;
771 
772  if ( num > cmax[p_col] )
773  forestReMaxCol( p_col, num );
774 
775  cidx = u.col.idx;
776 
777  cval = u.col.val;
778 
779  k = cbeg[p_col];
780 
781  r = 0;
782 
783  for ( j = 0; j < num; ++j )
784  {
785  i = nonz[j];
786  x = p_work[i];
787  p_work[i] = 0;
788 
789  if ( isNotZero( x, Param::epsilonUpdate() ) )
790  {
791  if ( fabs( x ) > l_maxabs )
792  l_maxabs = fabs( x );
793 
794  /* insert to column file */
795  assert( k - cbeg[p_col] < cmax[p_col] );
796 
797  cval[k] = x;
798 
799  cidx[k++] = i;
800 
801  /* insert to row file */
802  if ( rmax[i] <= rlen[i] )
803  {
804  remaxRow( i, rlen[i] + 1 );
805  rval = u.row.val;
806  ridx = u.row.idx;
807  }
808 
809  h = rbeg[i] + ( rlen[i] )++;
810 
811  rval[h] = x;
812  ridx[h] = p_col;
813 
814  /* check permuted row index */
815 
816  if ( rperm[i] > r )
817  r = rperm[i];
818  }
819  }
820 
821  nzCnt += ( clen[p_col] = k - cbeg[p_col] );
822  }
823  else
824  {
825  // Non-optimized call: We have to access all elements of p_work.
826  assert( nonz == 0 );
827 
828  /*
829  * clen[col] = 0;
830  * reMaxCol(fac, col, dim);
831  */
832  cidx = u.col.idx;
833  cval = u.col.val;
834  k = cbeg[p_col];
835  j = k + cmax[p_col];
836  r = 0;
837 
838  for ( i = 0; i < dim; ++i )
839  {
840  x = p_work[i];
841  p_work[i] = 0;
842 
843  if ( isNotZero( x, Param::epsilonUpdate() ) )
844  {
845  if ( fabs( x ) > l_maxabs )
846  l_maxabs = fabs( x );
847 
848  /* insert to column file */
849  if ( k >= j )
850  {
851  clen[p_col] = k - cbeg[p_col];
852  forestReMaxCol( p_col, dim - i );
853  cidx = u.col.idx;
854  cval = u.col.val;
855  k = cbeg[p_col];
856  j = k + cmax[p_col];
857  k += clen[p_col];
858  }
859 
860  assert( k - cbeg[p_col] < cmax[p_col] );
861 
862  cval[k] = x;
863  cidx[k++] = i;
864 
865  /* insert to row file */
866 
867  if ( rmax[i] <= rlen[i] )
868  {
869  remaxRow( i, rlen[i] + 1 );
870  rval = u.row.val;
871  ridx = u.row.idx;
872  }
873 
874  h = rbeg[i] + ( rlen[i] )++;
875 
876  rval[h] = x;
877  ridx[h] = p_col;
878 
879  /* check permuted row index */
880 
881  if ( rperm[i] > r )
882  r = rperm[i];
883  }
884  }
885 
886  nzCnt += ( clen[p_col] = k - cbeg[p_col] );
887 
888  if ( cbeg[p_col] + cmax[p_col] == u.col.used )
889  {
890  u.col.used -= cmax[p_col];
891  cmax[p_col] = clen[p_col];
892  u.col.used += cmax[p_col];
893  }
894  }
895 
896  c = cperm[p_col];
897 
898  if ( r > c ) /* Forest Tomlin update */
899  {
900  /* update permutations
901  */
902  j = rorig[c];
903 
904  for ( i = c; i < r; ++i )
905  rorig[i] = rorig[i + 1];
906 
907  rorig[r] = j;
908 
909  for ( i = c; i <= r; ++i )
910  rperm[rorig[i]] = i;
911 
912  j = corig[c];
913 
914  for ( i = c; i < r; ++i )
915  corig[i] = corig[i + 1];
916 
917  corig[r] = j;
918 
919  for ( i = c; i <= r; ++i )
920  cperm[corig[i]] = i;
921 
922 
923  rowno = rorig[r];
924 
925  j = rbeg[rowno];
926 
927  i = rlen[rowno];
928 
929  nzCnt -= i;
930 
931  if ( i < verySparseFactor * ( dim - c ) ) // few nonzeros to be eliminated
932  {
933  /**
934  * The following assert is obviously violated if this method is called
935  * with nonzero==0.
936  *
937  * @todo Use an extra member variable as a buffer for the heap instead of
938  * misusing nonz and num. The method enQueueMin() seems to
939  * sort the nonzeros or something, for which it only needs
940  * some empty vector of size num.
941  */
942  assert( nonz != 0 );
943 
944  /* move row r from U to p_work
945  */
946  num = 0;
947 
948  for ( i += j - 1; i >= j; --i )
949  {
950  k = ridx[i];
951  p_work[k] = rval[i];
952  enQueueMin( nonz, &num, cperm[k] );
953  m = --( clen[k] ) + cbeg[k];
954 
955  for ( h = m; cidx[h] != rowno; --h )
956  ;
957 
958  cidx[h] = cidx[m];
959 
960  cval[h] = cval[m];
961  }
962 
963 
964  /* Eliminate row r from U to L file
965  */
966  ll = makeLvec( r - c, rowno );
967 
968  lval = l.val;
969 
970  lidx = l.idx;
971 
972  assert(( num == 0 ) || ( nonz != 0 ) );
973 
974  /* for(i = c; i < r; ++i) */
975  while ( num )
976  {
977 #ifndef NDEBUG
978  // The numbers seem to be often 1e-100, is this ok ?
979 
980  for ( i = 0; i < num; ++i )
981  assert( p_work[corig[nonz[i]]] != 0.0 );
982 
983 #endif // NDEBUG
984  i = deQueueMin( nonz, &num );
985 
986  if ( i == r )
987  break;
988 
989  k = corig[i];
990 
991  assert( p_work[k] != 0.0 );
992 
993  n = rorig[i];
994 
995  x = p_work[k] * diag[n];
996 
997  lidx[ll] = n;
998 
999  lval[ll] = x;
1000 
1001  p_work[k] = 0;
1002 
1003  ll++;
1004 
1005  if ( fabs( x ) > l_maxabs )
1006  l_maxabs = fabs( x );
1007 
1008  j = rbeg[n];
1009 
1010  m = rlen[n] + j;
1011 
1012  for ( ; j < m; ++j )
1013  {
1014  int jj = ridx[j];
1015  Real y = p_work[jj];
1016 
1017  if ( y == 0 )
1018  enQueueMin( nonz, &num, cperm[jj] );
1019 
1020  y -= x * rval[j];
1021 
1022  p_work[jj] = y + (( y == 0 ) ? MARKER : 0.0 );
1023  }
1024  }
1025 
1026  if ( lbeg[l.firstUnused - 1] == ll )
1027  ( l.firstUnused )--;
1028  else
1029  lbeg[l.firstUnused] = ll;
1030 
1031 
1032  /* Set diagonal value
1033  */
1034  if ( i != r )
1035  {
1037  throw SPxStatusException( "XFORE01 The loaded matrix is singular" );
1038  }
1039 
1040  k = corig[r];
1041 
1042  x = p_work[k];
1043  diag[rowno] = 1 / x;
1044  p_work[k] = 0;
1045 
1046 
1047  /* make row large enough to fit all nonzeros.
1048  */
1049 
1050  if ( rmax[rowno] < num )
1051  {
1052  rlen[rowno] = 0;
1053  remaxRow( rowno, num );
1054  rval = u.row.val;
1055  ridx = u.row.idx;
1056  }
1057 
1058  nzCnt += num;
1059 
1060  /* Insert work to updated row thereby clearing work;
1061  */
1062  n = rbeg[rowno];
1063 
1064  for ( i = 0; i < num; ++i )
1065  {
1066  j = corig[nonz[i]];
1067  x = p_work[j];
1068 
1069  // BH 2005-08-24: This if is very important. It may well happen that
1070  // during the elimination of row r a nonzero elements cancels out
1071  // and becomes zero. This would lead to an infinite loop in the
1072  // above elimination code, since the corresponding column index would
1073  // be enqueued for further elimination again and agian.
1074 
1075  if ( x != 0.0 )
1076  {
1077  if ( fabs( x ) > l_maxabs )
1078  l_maxabs = fabs( x );
1079 
1080  ridx[n] = j;
1081 
1082  rval[n] = x;
1083 
1084  p_work[j] = 0;
1085 
1086  ++n;
1087 
1088  if ( clen[j] >= cmax[j] )
1089  {
1090  forestReMaxCol( j, clen[j] + 1 );
1091  cidx = u.col.idx;
1092  cval = u.col.val;
1093  }
1094 
1095  cval[cbeg[j] + clen[j]] = x;
1096 
1097  cidx[cbeg[j] + clen[j]++] = rowno;
1098  }
1099  }
1100 
1101  rlen[rowno] = n - rbeg[rowno];
1102  }
1103  else /* few nonzeros to be eliminated */
1104  {
1105  /* move row r from U to p_work
1106  */
1107  for ( i += j - 1; i >= j; --i )
1108  {
1109  k = ridx[i];
1110  p_work[k] = rval[i];
1111  m = --( clen[k] ) + cbeg[k];
1112 
1113  for ( h = m; cidx[h] != rowno; --h )
1114  ;
1115 
1116  cidx[h] = cidx[m];
1117 
1118  cval[h] = cval[m];
1119  }
1120 
1121 
1122  /* Eliminate row r from U to L file
1123  */
1124  ll = makeLvec( r - c, rowno );
1125 
1126  lval = l.val;
1127 
1128  lidx = l.idx;
1129 
1130  for ( i = c; i < r; ++i )
1131  {
1132  k = corig[i];
1133 
1134  if ( p_work[k] )
1135  {
1136  n = rorig[i];
1137  x = p_work[k] * diag[n];
1138  lidx[ll] = n;
1139  lval[ll] = x;
1140  p_work[k] = 0;
1141  ll++;
1142 
1143  if ( fabs( x ) > l_maxabs )
1144  l_maxabs = fabs( x );
1145 
1146  j = rbeg[n];
1147 
1148  m = rlen[n] + j;
1149 
1150  for ( ; j < m; ++j )
1151  p_work[ridx[j]] -= x * rval[j];
1152  }
1153  }
1154 
1155  if ( lbeg[l.firstUnused - 1] == ll )
1156  ( l.firstUnused )--;
1157  else
1158  lbeg[l.firstUnused] = ll;
1159 
1160 
1161  /* Set diagonal value
1162  */
1163  k = corig[r];
1164 
1165  x = p_work[k];
1166 
1167  if ( x == 0.0 )
1168  {
1170  throw SPxStatusException( "XFORE02 The loaded matrix is singular" );
1171  // return;
1172  }
1173 
1174  diag[rowno] = 1 / x;
1175 
1176  p_work[k] = 0;
1177 
1178 
1179  /* count remaining nonzeros in work and make row large enough
1180  * to fit them all.
1181  */
1182  n = 0;
1183 
1184  for ( i = r + 1; i < dim; ++i )
1185  if ( p_work[corig[i]] != 0.0 )
1186  n++;
1187 
1188  if ( rmax[rowno] < n )
1189  {
1190  rlen[rowno] = 0;
1191  remaxRow( rowno, n );
1192  rval = u.row.val;
1193  ridx = u.row.idx;
1194  }
1195 
1196  nzCnt += n;
1197 
1198  /* Insert p_work to updated row thereby clearing p_work;
1199  */
1200  n = rbeg[rowno];
1201 
1202  for ( i = r + 1; i < dim; ++i )
1203  {
1204  j = corig[i];
1205  x = p_work[j];
1206 
1207  if ( x != 0.0 )
1208  {
1209  if ( fabs( x ) > l_maxabs )
1210  l_maxabs = fabs( x );
1211 
1212  ridx[n] = j;
1213 
1214  rval[n] = x;
1215 
1216  p_work[j] = 0;
1217 
1218  ++n;
1219 
1220  if ( clen[j] >= cmax[j] )
1221  {
1222  forestReMaxCol( j, clen[j] + 1 );
1223  cidx = u.col.idx;
1224  cval = u.col.val;
1225  }
1226 
1227  cval[cbeg[j] + clen[j]] = x;
1228 
1229  cidx[cbeg[j] + clen[j]++] = rowno;
1230  }
1231  }
1232 
1233  rlen[rowno] = n - rbeg[rowno];
1234  }
1235  }
1236 
1237  else
1238  if ( r == c )
1239  {
1240  /* Move diagonal element to diag. Note, that it must be the last
1241  * element, since it has just been inserted above.
1242  */
1243  rowno = rorig[r];
1244  i = rbeg[rowno] + --( rlen[rowno] );
1245  diag[rowno] = 1 / rval[i];
1246 
1247  for ( j = i = --( clen[p_col] ) + cbeg[p_col]; cidx[i] != rowno; --i )
1248  ;
1249 
1250  cidx[i] = cidx[j];
1251 
1252  cval[i] = cval[j];
1253  }
1254  else /* r < c */
1255  {
1257  throw SPxStatusException( "XFORE03 The loaded matrix is singular" );
1258  // return;
1259  }
1260 
1261  maxabs = l_maxabs;
1262 
1263  assert( isConsistent() );
1264  stat = SLinSolver::OK;
1265 }
1266 
1267 void CLUFactor::update( int p_col, Real* p_work, const int* p_idx, int num )
1268 {
1269  METHOD( "CLUFactor::update()" );
1270  int ll, i, j;
1271  int* lidx;
1272  Real* lval;
1273  Real x, rezi;
1274 
1275  assert( p_work[p_col] != 0 );
1276  rezi = 1 / p_work[p_col];
1277  p_work[p_col] = 0;
1278 
1279  ll = makeLvec( num, p_col );
1280  // ll = fac->makeLvec(num, col);
1281  lval = l.val;
1282  lidx = l.idx;
1283 
1284  for ( i = num - 1; ( j = p_idx[i] ) != p_col; --i )
1285  {
1286  lidx[ll] = j;
1287  lval[ll] = rezi * p_work[j];
1288  p_work[j] = 0;
1289  ++ll;
1290  }
1291 
1292  lidx[ll] = p_col;
1293 
1294  lval[ll] = 1 - rezi;
1295  ++ll;
1296 
1297  for ( --i; i >= 0; --i )
1298  {
1299  j = p_idx[i];
1300  lidx[ll] = j;
1301  lval[ll] = x = rezi * p_work[j];
1302  p_work[j] = 0;
1303  ++ll;
1304 
1305  if ( fabs( x ) > maxabs )
1306  maxabs = fabs( x );
1307  }
1308 
1309  stat = SLinSolver::OK;
1310 }
1311 
1313  int p_col,
1314  const Real* p_work,
1315  const int* p_idx,
1316  int num )
1317 {
1318  METHOD( "CLUFactor::updateNoClear()" );
1319  int ll, i, j;
1320  int* lidx;
1321  Real* lval;
1322  Real x, rezi;
1323 
1324  assert( p_work[p_col] != 0 );
1325  rezi = 1 / p_work[p_col];
1326  ll = makeLvec( num, p_col );
1327  //ll = fac->makeLvec(num, col);
1328  lval = l.val;
1329  lidx = l.idx;
1330 
1331  for ( i = num - 1; ( j = p_idx[i] ) != p_col; --i )
1332  {
1333  lidx[ll] = j;
1334  lval[ll] = rezi * p_work[j];
1335  ++ll;
1336  }
1337 
1338  lidx[ll] = p_col;
1339 
1340  lval[ll] = 1 - rezi;
1341  ++ll;
1342 
1343  for ( --i; i >= 0; --i )
1344  {
1345  j = p_idx[i];
1346  lidx[ll] = j;
1347  lval[ll] = x = rezi * p_work[j];
1348  ++ll;
1349 
1350  if ( fabs( x ) > maxabs )
1351  maxabs = fabs( x );
1352  }
1353 
1354  stat = SLinSolver::OK;
1355 }
1356 
1357 /*****************************************************************************/
1358 /*
1359  * Temporary data structures.
1360  */
1361 
1362 /*
1363  * For the i=th column the situation might look like this:
1364  *
1365  * \begin{verbatim}
1366  * idx = ....................iiiIIIIII-----..............
1367  * cbeg[i] = ^
1368  * cact[i] = +----+
1369  * clen[i] = +-------+
1370  * cmax[i] = +------------+
1371  *
1372  * Indices clen[i]-cbeg[i]: ^^^
1373  * \end{verbatim}
1374  * belong to column i, but have already been pivotal and don't belong to
1375  * the active submatrix.
1376  */
1377 
1378 /****************************************************************************/
1379 /*
1380  * Initialize row and column file of working matrix and
1381  * mark column singletons.
1382  */
1383 void CLUFactor::initFactorMatrix( const SVector** vec, const Real eps )
1384 {
1385  METHOD( "CLUFactor::initFactorMatrix()" );
1386 
1387  Real x;
1388  int m;
1389  int tot;
1390  Dring *rring, *lastrring;
1391  Dring *cring, *lastcring;
1392  const SVector *psv;
1393  int *sing = temp.s_mark;
1394 
1395  /* Initialize:
1396  * - column file thereby remembering column singletons in |sing|.
1397  * - nonzeros counts per row
1398  * - total number of nonzeros
1399  */
1400 
1401  for ( int i = 0; i < thedim; i++ )
1402  u.row.max[i] = u.row.len[i] = 0;
1403 
1404  tot = 0;
1405 
1406  for ( int i = 0; i < thedim; i++ )
1407  {
1408  int k;
1409 
1410  psv = vec[i];
1411  k = psv->size();
1412 
1413  if ( k > 1 )
1414  {
1415  tot += k;
1416 
1417  for ( int j = 0; j < k; ++j )
1418  u.row.max[psv->index( j )]++;
1419  }
1420  else
1421  if ( k == 0 )
1422  {
1424  return;
1425  }
1426  }
1427 
1428  /* Resize nonzero memory if necessary
1429  */
1430  minRowMem( int( rowMemMult * tot ) );
1431 
1432  minColMem( int( colMemMult * tot ) );
1433 
1434  minLMem( int( lMemMult * tot ) );
1435 
1436 
1437  /* Initialize:
1438  * - row ring lists
1439  * - row vectors in file
1440  * - column ring lists
1441  */
1442  u.row.start[0] = 0;
1443 
1444  rring = u.row.elem;
1445 
1446  lastrring = &( u.row.list );
1447 
1448  lastrring->idx = thedim;
1449 
1450  lastrring->next = rring;
1451 
1452  cring = u.col.elem;
1453 
1454  lastcring = &( u.col.list );
1455 
1456  lastcring->idx = thedim;
1457 
1458  lastcring->next = cring;
1459 
1460  m = 0;
1461 
1462  for ( int i = 0; i < thedim; i++ )
1463  {
1464  u.row.start[i] = m;
1465  m += u.row.max[i];
1466 
1467  rring->idx = i;
1468  rring->prev = lastrring;
1469  lastrring->next = rring;
1470  lastrring = rring;
1471  ++rring;
1472 
1473  cring->idx = i;
1474  cring->prev = lastcring;
1475  lastcring->next = cring;
1476  lastcring = cring;
1477  ++cring;
1478  }
1479 
1480  u.row.start[thedim] = 0;
1481 
1482  u.row.max[thedim] = 0;
1483  u.row.used = m;
1484 
1485  lastrring->next = &( u.row.list );
1486  lastrring->next->prev = lastrring;
1487 
1488  lastcring->next = &( u.col.list );
1489  lastcring->next->prev = lastcring;
1490 
1491  /* Copy matrix to row and column file
1492  * excluding and marking column singletons!
1493  */
1494  m = 0;
1495  temp.stage = 0;
1496 
1497  initMaxabs = 0;
1498 
1499  for ( int i = 0; i < thedim; i++ )
1500  {
1501  int nnonzeros;
1502 
1503  psv = vec[i];
1504  u.col.start[i] = m;
1505 
1506  /* check whether number of nonzeros above tolerance is 0, 1 or >= 2 */
1507  nnonzeros = 0;
1508 
1509  for ( int j = 0; j < psv->size() && nnonzeros <= 1; j++ )
1510  {
1511  if ( isNotZero( psv->value( j ), eps ) )
1512  nnonzeros++;
1513  }
1514 
1515  /* basis is singular due to empty column */
1516  if ( nnonzeros == 0 )
1517  {
1519  return;
1520  }
1521 
1522  /* exclude column singletons */
1523  else
1524  if ( nnonzeros == 1 )
1525  {
1526  int j;
1527 
1528  /* find nonzero */
1529 
1530  for ( j = 0; isZero( psv->value( j ), eps ); j++ )
1531  ;
1532 
1533  assert( j < psv->size() );
1534 
1535  /* basis is singular due to two linearly dependent column singletons */
1536  if ( row.perm[psv->index( j )] >= 0 )
1537  {
1539  return;
1540  }
1541 
1542  /* update maximum absolute nonzero value */
1543  x = psv->value( j );
1544 
1545  if ( fabs( x ) > initMaxabs )
1546  initMaxabs = fabs( x );
1547 
1548  /* permute to front and mark as singleton */
1549  setPivot( temp.stage, i, psv->index( j ), x );
1550 
1551  sing[temp.stage] = i;
1552 
1553  temp.stage++;
1554 
1555  /* set column length to zero */
1556  temp.s_cact[i] = u.col.len[i] = u.col.max[i] = 0;
1557  }
1558 
1559  /* add to active matrix if not a column singleton */
1560  else
1561  {
1562  int end;
1563  int k;
1564 
1565  /* go through all nonzeros in column */
1566  assert( nnonzeros >= 2 );
1567  nnonzeros = 0;
1568 
1569  for ( int j = 0; j < psv->size(); j++ )
1570  {
1571  x = psv->value( j );
1572 
1573  if ( isNotZero( x, eps ) )
1574  {
1575  /* add to column array */
1576  k = psv->index( j );
1577  u.col.idx[m] = k;
1578  m++;
1579 
1580  /* add to row array */
1581  end = u.row.start[k] + u.row.len[k];
1582  u.row.idx[end] = i;
1583  u.row.val[end] = x;
1584  u.row.len[k]++;
1585 
1586  /* update maximum absolute nonzero value */
1587 
1588  if ( fabs( x ) > initMaxabs )
1589  initMaxabs = fabs( x );
1590 
1591  nnonzeros++;
1592  }
1593  }
1594 
1595  assert( nnonzeros >= 2 );
1596 
1597  /* set column length */
1598  temp.s_cact[i] = u.col.len[i] = u.col.max[i] = nnonzeros;
1599  }
1600  }
1601 
1602  u.col.used = m;
1603 }
1604 
1605 
1606 
1607 /*****************************************************************************/
1608 /*
1609  * Remove column singletons
1610  */
1611 
1613 {
1614  METHOD( "CLUFactor::colSingletons()" );
1615  int i, j, k, n;
1616  int len;
1617  int p_col, p_row, newrow;
1618  int *idx;
1619  int *rorig = row.orig;
1620  int *rperm = row.perm;
1621  int *sing = temp.s_mark;
1622 
1623 
1624  /* Iteratively update column counts due to removed column singletons
1625  * thereby removing new arising columns singletons
1626  * and computing the index of the first row singleton (-1)
1627  * until no more can be found.
1628  */
1629 
1630  for ( i = 0; i < temp.stage; ++i )
1631  {
1632  p_row = rorig[i];
1633  assert( p_row >= 0 );
1634  idx = &( u.row.idx[u.row.start[p_row]] );
1635  len = u.row.len[p_row];
1636 
1637  for ( j = 0; j < len; ++j )
1638  {
1639  /* Move pivotal nonzeros to front of column.
1640  */
1641  p_col = idx[j];
1642  assert( temp.s_cact[p_col] > 0 );
1643 
1644  n = u.col.start[p_col] + u.col.len[p_col] - temp.s_cact[p_col];
1645 
1646  for ( k = n; u.col.idx[k] != p_row; ++k )
1647  ;
1648 
1649  assert( k < u.col.start[p_col] + u.col.len[p_col] );
1650 
1651  u.col.idx[k] = u.col.idx[n];
1652 
1653  u.col.idx[n] = p_row;
1654 
1655  n = --( temp.s_cact[p_col] ); /* column nonzeros of ACTIVE matrix */
1656 
1657  if ( n == 1 ) /* Here is another singleton */
1658  {
1659  newrow = u.col.idx[--u.col.len[p_col] + u.col.start[p_col]];
1660 
1661  /* Ensure, matrix not singular
1662  */
1663 
1664  if ( rperm[newrow] >= 0 )
1665  {
1667  return;
1668  }
1669 
1670  /* Find singleton in row.
1671  */
1672  n = u.row.start[newrow] + ( --( u.row.len[newrow] ) );
1673 
1674  for ( k = n; u.row.idx[k] != p_col; --k )
1675  ;
1676 
1677  /* Remove singleton from column.
1678  */
1679  setPivot( temp.stage, p_col, newrow, u.row.val[k] );
1680 
1681  sing[temp.stage++] = p_col;
1682 
1683  /* Move pivot element to diag.
1684  */
1685  u.row.val[k] = u.row.val[n];
1686 
1687  u.row.idx[k] = u.row.idx[n];
1688  }
1689  else
1690  if ( n == 0 )
1691  {
1693  return;
1694  }
1695  }
1696  }
1697 
1698  assert( temp.stage <= thedim );
1699 }
1700 
1701 
1702 /*****************************************************************************/
1703 /*
1704  * Remove row singletons
1705  */
1707 {
1708  METHOD( "CLUFactor::rowSingletons()" );
1709  Real pval;
1710  int i, j, k, ll, r;
1711  int p_row, p_col, len, rs, lk;
1712  int *idx;
1713  int *rperm = row.perm;
1714  int *sing = temp.s_mark;
1715 
1716  /* Mark row singletons
1717  */
1718  rs = temp.stage;
1719 
1720  for ( i = 0; i < thedim; ++i )
1721  {
1722  if ( rperm[i] < 0 && u.row.len[i] == 1 )
1723  sing[temp.stage++] = i;
1724  }
1725 
1726  /* Eliminate row singletons
1727  * thereby marking newly arising ones
1728  * until no more can be found.
1729  */
1730  for ( ; rs < temp.stage; ++rs )
1731  {
1732  /* Move pivot element from row file to diag
1733  */
1734  p_row = sing[rs];
1735  j = u.row.start[p_row];
1736  p_col = u.row.idx[j];
1737  pval = u.row.val[j];
1738  setPivot( rs, p_col, p_row, pval );
1739  u.row.len[p_row] = 0;
1740 
1741  /* Remove pivot column form workingmatrix
1742  * thereby building up L vector.
1743  */
1744  idx = &( u.col.idx[u.col.start[p_col]] );
1745  i = temp.s_cact[p_col]; /* nr. nonzeros of new L vector */
1746  lk = makeLvec( i - 1, p_row );
1747  len = u.col.len[p_col];
1748  i = ( u.col.len[p_col] -= i ); /* remove pivot column from U */
1749 
1750  for ( ; i < len; ++i )
1751  {
1752  r = idx[i];
1753 
1754  if ( r != p_row )
1755  {
1756  /* Find pivot column in row.
1757  */
1758  ll = --( u.row.len[r] );
1759  k = u.row.start[r] + ll;
1760 
1761  for ( j = k; u.row.idx[j] != p_col; --j )
1762  ;
1763 
1764  assert( k >= u.row.start[r] );
1765 
1766  /* Initialize L vector
1767  */
1768  l.idx[lk] = r;
1769 
1770  l.val[lk] = u.row.val[j] / pval;
1771 
1772  ++lk;
1773 
1774  /* Remove pivot column from row.
1775  */
1776  u.row.idx[j] = u.row.idx[k];
1777 
1778  u.row.val[j] = u.row.val[k];
1779 
1780  /* Check new row length.
1781  */
1782  if ( ll == 1 )
1783  sing[temp.stage++] = r;
1784  else
1785  if ( ll == 0 )
1786  {
1788  return;
1789  }
1790  }
1791  }
1792  }
1793 }
1794 
1795 
1796 /*****************************************************************************/
1797 /*
1798  * Init nonzero number Ring lists
1799  * and required entries of arrays max and mark
1800  */
1801 
1803 {
1804  METHOD( "CLUFactor::initFactorRings()" );
1805  int i;
1806  int *rperm = row.perm;
1807  int *cperm = col.perm;
1808  CLUFactor::Pring *ring;
1809 
1810  assert( thedim >= 0 );
1811  spx_alloc( temp.pivot_col, thedim + 1 );
1812  spx_alloc( temp.pivot_colNZ, thedim + 1 );
1813  spx_alloc( temp.pivot_row, thedim + 1 );
1814  spx_alloc( temp.pivot_rowNZ, thedim + 1 );
1815 
1816  for ( i = thedim - temp.stage; i >= 0; --i )
1817  {
1818  initDR( temp.pivot_colNZ[i] );
1819  initDR( temp.pivot_rowNZ[i] );
1820  }
1821 
1822  for ( i = 0; i < thedim; ++i )
1823  {
1824  if ( rperm[i] < 0 )
1825  {
1826  if ( u.row.len[i] <= 0 )
1827  {
1829  return;
1830  }
1831 
1832  ring = &( temp.pivot_rowNZ[u.row.len[i]] );
1833 
1834  init2DR( temp.pivot_row[i], *ring );
1835  temp.pivot_row[i].idx = i;
1836  temp.s_max[i] = -1;
1837  }
1838 
1839  if ( cperm[i] < 0 )
1840  {
1841  if ( temp.s_cact[i] <= 0 )
1842  {
1844  return;
1845  }
1846 
1847  ring = &( temp.pivot_colNZ[temp.s_cact[i]] );
1848 
1849  init2DR( temp.pivot_col[i], *ring );
1850  temp.pivot_col[i].idx = i;
1851  temp.s_mark[i] = 0;
1852  }
1853  }
1854 }
1855 
1857 {
1858  METHOD( "CLUFactor::freeFactorRings()" );
1859 
1860  if ( temp.pivot_col )
1861  spx_free( temp.pivot_col );
1862 
1863  if ( temp.pivot_colNZ )
1865 
1866  if ( temp.pivot_row )
1867  spx_free( temp.pivot_row );
1868 
1869  if ( temp.pivot_rowNZ )
1871 }
1872 
1873 
1874 /*
1875  * Eliminate all row singletons from nucleus.
1876  * A row singleton may well be column singleton at the same time!
1877  */
1879 {
1880  METHOD( "CLUFactor::eliminateRowSingletons()" );
1881  int i, j, k, ll, r;
1882  int len, lk;
1883  int pcol, prow;
1884  Real pval;
1885  int *idx;
1886  CLUFactor::Pring *sing;
1887 
1888  for ( sing = temp.pivot_rowNZ[1].prev; sing != &( temp.pivot_rowNZ[1] ); sing = sing->prev )
1889  {
1890  prow = sing->idx;
1891  i = u.row.start[prow];
1892  pcol = u.row.idx[i];
1893  pval = u.row.val[i];
1894  setPivot( temp.stage++, pcol, prow, pval );
1895  u.row.len[prow] = 0;
1896  removeDR( temp.pivot_col[pcol] );
1897 
1898  /* Eliminate pivot column and build L vector.
1899  */
1900  i = temp.s_cact[pcol];
1901 
1902  if ( i > 1 )
1903  {
1904  idx = &( u.col.idx[u.col.start[pcol]] );
1905  len = u.col.len[pcol];
1906  lk = makeLvec( i - 1, prow );
1907  i = u.col.len[pcol] -= i;
1908 
1909  for ( ; ( r = idx[i] ) != prow; ++i )
1910  {
1911  /* Find pivot column in row.
1912  */
1913  ll = --( u.row.len[r] );
1914  k = u.row.start[r] + ll;
1915 
1916  for ( j = k; u.row.idx[j] != pcol; --j )
1917  ;
1918 
1919  assert( j >= u.row.start[r] );
1920 
1921  /* Initialize L vector
1922  */
1923  l.idx[lk] = r;
1924 
1925  l.val[lk] = u.row.val[j] / pval;
1926 
1927  ++lk;
1928 
1929  /* Remove pivot column from row.
1930  */
1931  u.row.idx[j] = u.row.idx[k];
1932 
1933  u.row.val[j] = u.row.val[k];
1934 
1935  /* Move column to appropriate nonzero ring.
1936  */
1937  removeDR( temp.pivot_row[r] );
1938 
1939  init2DR( temp.pivot_row[r], temp.pivot_rowNZ[ll] );
1940 
1941  assert( row.perm[r] < 0 );
1942 
1943  temp.s_max[r] = -1;
1944  }
1945 
1946  /* skip pivot element */
1947  assert( i < len && "ERROR: pivot column does not contain pivot row" );
1948 
1949  for ( ++i; i < len; ++i )
1950  {
1951  /* Find pivot column in row.
1952  */
1953  r = idx[i];
1954  ll = --( u.row.len[r] );
1955  k = u.row.start[r] + ll;
1956 
1957  for ( j = k; u.row.idx[j] != pcol; --j )
1958  ;
1959 
1960  assert( j >= u.row.start[r] );
1961 
1962  /* Initialize L vector
1963  */
1964  l.idx[lk] = r;
1965 
1966  l.val[lk] = u.row.val[j] / pval;
1967 
1968  ++lk;
1969 
1970  /* Remove pivot column from row.
1971  */
1972  u.row.idx[j] = u.row.idx[k];
1973 
1974  u.row.val[j] = u.row.val[k];
1975 
1976  /* Move column to appropriate nonzero ring.
1977  */
1978  removeDR( temp.pivot_row[r] );
1979 
1980  init2DR( temp.pivot_row[r], temp.pivot_rowNZ[ll] );
1981 
1982  assert( row.perm[r] < 0 );
1983 
1984  temp.s_max[r] = -1;
1985  }
1986  }
1987  else
1988  u.col.len[pcol] -= i;
1989  }
1990 
1991  initDR( temp.pivot_rowNZ[1] ); /* Remove all row singletons from list */
1992 }
1993 
1994 
1995 
1996 /*
1997  * Eliminate all column singletons from nucleus.
1998  * A column singleton must not be row singleton at the same time!
1999  */
2001 {
2002  METHOD( "CLUFactor::eliminateColSingletons()" );
2003  int i, j, k, m, c;
2004  int pcol, prow;
2005  CLUFactor::Pring *sing;
2006 
2007  for ( sing = temp.pivot_colNZ[1].prev;
2008  sing != &( temp.pivot_colNZ[1] );
2009  sing = sing->prev )
2010  {
2011  /* Find pivot value
2012  */
2013  pcol = sing->idx;
2014  j = --( u.col.len[pcol] ) + u.col.start[pcol]; /* remove pivot column */
2015  prow = u.col.idx[j];
2016  removeDR( temp.pivot_row[prow] );
2017 
2018  j = --( u.row.len[prow] ) + u.row.start[prow];
2019 
2020  for ( i = j; ( c = u.row.idx[i] ) != pcol; --i )
2021  {
2022  m = u.col.len[c] + u.col.start[c] - ( temp.s_cact[c] )--;
2023 
2024  for ( k = m; u.col.idx[k] != prow; ++k )
2025  ;
2026 
2027  u.col.idx[k] = u.col.idx[m];
2028 
2029  u.col.idx[m] = prow;
2030 
2031  m = temp.s_cact[c];
2032 
2033  removeDR( temp.pivot_col[c] );
2034 
2036 
2037  assert( col.perm[c] < 0 );
2038  }
2039 
2040  /* remove pivot element from pivot row
2041  */
2042  setPivot( temp.stage++, pcol, prow, u.row.val[i] );
2043 
2044  u.row.idx[i] = u.row.idx[j];
2045 
2046  u.row.val[i] = u.row.val[j];
2047 
2048  j = u.row.start[prow];
2049 
2050  for ( --i; i >= j; --i )
2051  {
2052  c = u.row.idx[i];
2053  m = u.col.len[c] + u.col.start[c] - ( temp.s_cact[c] )--;
2054 
2055  for ( k = m; u.col.idx[k] != prow; ++k )
2056  ;
2057 
2058  u.col.idx[k] = u.col.idx[m];
2059 
2060  u.col.idx[m] = prow;
2061 
2062  m = temp.s_cact[c];
2063 
2064  removeDR( temp.pivot_col[c] );
2065 
2067 
2068  assert( col.perm[c] < 0 );
2069  }
2070  }
2071 
2072  initDR( temp.pivot_colNZ[1] ); /* Remove all column singletons from list */
2073 }
2074 
2075 /*
2076  * No singletons available: Select pivot elements.
2077  */
2079 {
2080  METHOD( "CLUFactor::selectPivots()" );
2081  int ii;
2082  int i;
2083  int j;
2084  int k;
2085  int ll = -1; // This value should never be used.
2086  int kk;
2087  int m;
2088  int count;
2089  int num;
2090  int rw = -1; // This value should never be used.
2091  int cl = -1; // This value should never be used.
2092  int len;
2093  int beg;
2094  Real l_maxabs;
2095  Real x = REAL( 0.0 ); // This value should never be used.
2096  int mkwtz;
2097  int candidates;
2098 
2099  candidates = thedim - temp.stage - 1;
2100 
2101  if ( candidates > 4 )
2102  candidates = 4;
2103 
2104  num = 0;
2105 
2106  count = 2;
2107 
2108  for ( ;; )
2109  {
2110  ii = -1;
2111 
2112  if ( temp.pivot_rowNZ[count].next != &( temp.pivot_rowNZ[count] ) )
2113  {
2114  rw = temp.pivot_rowNZ[count].next->idx;
2115  beg = u.row.start[rw];
2116  len = u.row.len[rw] + beg - 1;
2117 
2118  /* set l_maxabs to maximum absolute value in row
2119  * (compute it if necessary).
2120  */
2121 
2122  if (( l_maxabs = temp.s_max[rw] ) < 0 )
2123  {
2124  l_maxabs = fabs( u.row.val[len] );
2125 
2126  for ( i = len - 1; i >= beg; --i )
2127  if ( l_maxabs < fabs( u.row.val[i] ) )
2128  l_maxabs = fabs( u.row.val[i] );
2129 
2130  temp.s_max[rw] = l_maxabs; /* ##### */
2131  }
2132 
2133  l_maxabs *= threshold;
2134 
2135  /* select pivot element with lowest markowitz number in row
2136  */
2137  mkwtz = thedim + 1;
2138 
2139  for ( i = len; i >= beg; --i )
2140  {
2141  k = u.row.idx[i];
2142  j = temp.s_cact[k];
2143  x = u.row.val[i];
2144 
2145  if ( j < mkwtz && fabs( x ) > l_maxabs )
2146  {
2147  mkwtz = j;
2148  cl = k;
2149  ii = i;
2150 
2151  if ( j <= count ) /* ##### */
2152  break;
2153  }
2154  }
2155  }
2156  else
2157  if ( temp.pivot_colNZ[count].next != &( temp.pivot_colNZ[count] ) )
2158  {
2159  cl = temp.pivot_colNZ[count].next->idx;
2160  beg = u.col.start[cl];
2161  len = u.col.len[cl] + beg - 1;
2162  beg = len - temp.s_cact[cl] + 1;
2163  assert( count == temp.s_cact[cl] );
2164 
2165  /* select pivot element with lowest markowitz number in column
2166  */
2167  mkwtz = thedim + 1;
2168 
2169  for ( i = len; i >= beg; --i )
2170  {
2171  k = u.col.idx[i];
2172  j = u.row.len[k];
2173 
2174  if ( j < mkwtz )
2175  {
2176  /* ensure that element (cl,k) is stable.
2177  */
2178  if ( temp.s_max[k] > 0 )
2179  {
2180  /* case 1: l_maxabs is known
2181  */
2182  for ( m = u.row.start[k], kk = m + u.row.len[k] - 1;
2183  kk >= m; --kk )
2184  {
2185  if ( u.row.idx[kk] == cl )
2186  {
2187  x = u.row.val[kk];
2188  ll = kk;
2189  break;
2190  }
2191  }
2192 
2193  l_maxabs = temp.s_max[k];
2194  }
2195  else
2196  {
2197  /* case 2: l_maxabs needs to be computed
2198  */
2199  m = u.row.start[k];
2200  l_maxabs = fabs( u.row.val[m] );
2201 
2202  for ( kk = m + u.row.len[k] - 1; kk >= m; --kk )
2203  {
2204  if ( l_maxabs < fabs( u.row.val[kk] ) )
2205  l_maxabs = fabs( u.row.val[kk] );
2206 
2207  if ( u.row.idx[kk] == cl )
2208  {
2209  x = u.row.val[kk];
2210  ll = kk;
2211  break;
2212  }
2213  }
2214 
2215  for ( --kk; kk > m; --kk )
2216  {
2217  if ( l_maxabs < fabs( u.row.val[kk] ) )
2218  l_maxabs = fabs( u.row.val[kk] );
2219  }
2220 
2221  temp.s_max[k] = l_maxabs;
2222  }
2223 
2224  l_maxabs *= threshold;
2225 
2226  if ( fabs( x ) > l_maxabs )
2227  {
2228  mkwtz = j;
2229  rw = k;
2230  ii = ll;
2231 
2232  if ( j <= count + 1 )
2233  break;
2234  }
2235  }
2236  }
2237  }
2238  else
2239  {
2240  ++count;
2241  continue;
2242  }
2243 
2244  assert( cl >= 0 );
2245 
2246  removeDR( temp.pivot_col[cl] );
2247  initDR( temp.pivot_col[cl] );
2248 
2249  if ( ii >= 0 )
2250  {
2251  /* Initialize selected pivot element
2252  */
2253  CLUFactor::Pring *pr;
2254  temp.pivot_row[rw].pos = ii - u.row.start[rw];
2255  temp.pivot_row[rw].mkwtz = mkwtz = ( mkwtz - 1 ) * ( count - 1 );
2256  // ??? mkwtz originally was long,
2257  // maybe to avoid an overflow in this instruction?
2258 
2259  for ( pr = temp.pivots.next; pr->idx >= 0; pr = pr->next )
2260  {
2261  if ( pr->idx == rw || pr->mkwtz >= mkwtz )
2262  break;
2263  }
2264 
2265  pr = pr->prev;
2266 
2267  if ( pr->idx != rw )
2268  {
2269  removeDR( temp.pivot_row[rw] );
2270  init2DR( temp.pivot_row[rw], *pr );
2271  }
2272 
2273  num++;
2274 
2275  if ( num >= candidates )
2276  break;
2277  }
2278  }
2279 
2280  /*
2281  * while(temp.temp.next->mkwtz < temp.temp.prev->mkwtz)
2282  * {
2283  * Pring *pr;
2284  * pr = temp.temp.prev;
2285  * removeDR(*pr);
2286  * init2DR (*pr, rowNZ[u.row.len[pr->idx]]);
2287  }
2288  */
2289 
2290  assert( row.perm[rw] < 0 );
2291 
2292  assert( col.perm[cl] < 0 );
2293 }
2294 
2295 
2296 /*
2297  * Perform L and update loop for row r
2298  */
2300  int lv,
2301  int prow,
2302  int pcol,
2303  Real pval,
2304  Real eps )
2305 {
2306  METHOD( "CLUFactor::updateRow()" );
2307  int fill;
2308  Real x, lx;
2309  int c, i, j, k, ll, m, n;
2310 
2311  n = u.row.start[r];
2312  m = --( u.row.len[r] ) + n;
2313 
2314  /* compute L vector entry and
2315  * and remove pivot column form row file
2316  */
2317 
2318  for ( j = m; u.row.idx[j] != pcol; --j )
2319  ;
2320 
2321  lx = u.row.val[j] / pval;
2322 
2323  l.val[lv] = lx;
2324 
2325  l.idx[lv] = r;
2326 
2327  ++lv;
2328 
2329  u.row.idx[j] = u.row.idx[m];
2330 
2331  u.row.val[j] = u.row.val[m];
2332 
2333 
2334  /* update loop (I) and
2335  * computing expected fill
2336  */
2337  fill = u.row.len[prow];
2338 
2339  for ( j = m - 1; j >= n; --j )
2340  {
2341  c = u.row.idx[j];
2342 
2343  if ( temp.s_mark[c] )
2344  {
2345  /* count fill elements.
2346  */
2347  temp.s_mark[c] = 0;
2348  --fill;
2349 
2350  /* update row values
2351  */
2352  x = u.row.val[j] -= work[c] * lx;
2353 
2354  if ( isZero( x, eps ) )
2355  {
2356  /* Eliminate zero from row r
2357  */
2358  --u.row.len[r];
2359  --m;
2360  u.row.val[j] = u.row.val[m];
2361  u.row.idx[j] = u.row.idx[m];
2362 
2363  /* Eliminate zero from column c
2364  */
2365  --( temp.s_cact[c] );
2366  k = --( u.col.len[c] ) + u.col.start[c];
2367 
2368  for ( i = k; u.col.idx[i] != r; --i )
2369  ;
2370 
2371  u.col.idx[i] = u.col.idx[k];
2372  }
2373  }
2374  }
2375 
2376 
2377  /* create space for fill in row file
2378  */
2379  ll = u.row.len[r];
2380 
2381  if ( ll + fill > u.row.max[r] )
2382  remaxRow( r, ll + fill );
2383 
2384  ll += u.row.start[r];
2385 
2386  /* fill creating update loop (II)
2387  */
2388  for ( j = u.row.start[prow], m = j + u.row.len[prow]; j < m; ++j )
2389  {
2390  c = u.row.idx[j];
2391 
2392  if ( temp.s_mark[c] )
2393  {
2394  x = - work[c] * lx;
2395 
2396  if ( isNotZero( x, eps ) )
2397  {
2398  /* produce fill element in row r
2399  */
2400  u.row.val[ll] = x;
2401  u.row.idx[ll] = c;
2402  ll++;
2403  u.row.len[r]++;
2404 
2405  /* produce fill element in column c
2406  */
2407 
2408  if ( u.col.len[c] >= u.col.max[c] )
2409  remaxCol( c, u.col.len[c] + 1 );
2410 
2411  u.col.idx[u.col.start[c] + ( u.col.len[c] )++] = r;
2412 
2413  temp.s_cact[c]++;
2414  }
2415  }
2416  else
2417  temp.s_mark[c] = 1;
2418  }
2419 
2420  /* move row to appropriate list.
2421  */
2422  removeDR( temp.pivot_row[r] );
2423 
2425 
2426  assert( row.perm[r] < 0 );
2427 
2428  temp.s_max[r] = -1;
2429 
2430  return lv;
2431 }
2432 
2433 /*
2434  * Eliminate pivot element
2435  */
2436 void CLUFactor::eliminatePivot( int prow, int pos, Real eps )
2437 {
2438  METHOD( "CLUFactor::eliminatePivot()" );
2439  int i, j, k, m = -1;
2440  int lv = -1; // This value should never be used.
2441  int pcol;
2442  Real pval;
2443  int pbeg = u.row.start[prow];
2444  int plen = --( u.row.len[prow] );
2445  int pend = pbeg + plen;
2446 
2447 
2448  /* extract pivot element */
2449  i = pbeg + pos;
2450  pcol = u.row.idx[i];
2451  pval = u.row.val[i];
2452  removeDR( temp.pivot_col[pcol] );
2453  initDR( temp.pivot_col[pcol] );
2454 
2455  /* remove pivot from pivot row */
2456  u.row.idx[i] = u.row.idx[pend];
2457  u.row.val[i] = u.row.val[pend];
2458 
2459  /* set pivot element and construct L vector */
2460  setPivot( temp.stage++, pcol, prow, pval );
2461 
2462  /**@todo If this test failes, lv has no value. I suppose that in this
2463  * case none of the loops below that uses lv is executed.
2464  * But this is unproven.
2465  */
2466 
2467  if ( temp.s_cact[pcol] - 1 > 0 )
2468  lv = makeLvec( temp.s_cact[pcol] - 1, prow );
2469 
2470  /* init working vector,
2471  * remove pivot row from working matrix
2472  * and remove columns from list.
2473  */
2474  for ( i = pbeg; i < pend; ++i )
2475  {
2476  j = u.row.idx[i];
2477  temp.s_mark[j] = 1;
2478  work[j] = u.row.val[i];
2479  removeDR( temp.pivot_col[j] );
2480  m = u.col.start[j] + u.col.len[j] - temp.s_cact[j];
2481 
2482  for ( k = m; u.col.idx[k] != prow; ++k )
2483  ;
2484 
2485  u.col.idx[k] = u.col.idx[m];
2486 
2487  u.col.idx[m] = prow;
2488 
2489  temp.s_cact[j]--;
2490  }
2491 
2492  /* perform L and update loop
2493  */
2494  for ( i = u.col.len[pcol] - temp.s_cact[pcol];
2495  ( m = u.col.idx[u.col.start[pcol] + i] ) != prow;
2496  ++i )
2497  {
2498  assert( row.perm[m] < 0 );
2499  assert( lv >= 0 );
2500  updateRow( m, lv++, prow, pcol, pval, eps );
2501  }
2502 
2503  /* skip pivot row */
2504 
2505  m = u.col.len[pcol];
2506 
2507  for ( ++i; i < m; ++i )
2508  {
2509  assert( lv >= 0 );
2510  updateRow( u.col.idx[u.col.start[pcol] + i], lv++, prow, pcol, pval, eps );
2511  }
2512 
2513  /* remove pivot column from column file.
2514  */
2515  u.col.len[pcol] -= temp.s_cact[pcol];
2516 
2517  /* clear working vector and reinsert columns to lists
2518  */
2519  for ( i = u.row.start[prow], pend = i + plen; i < pend; ++i )
2520  {
2521  j = u.row.idx[i];
2522  work[j] = 0;
2523  temp.s_mark[j] = 0;
2525  assert( col.perm[j] < 0 );
2526  }
2527 }
2528 
2529 
2530 /*
2531  * Factorize nucleus.
2532  */
2534  const Real threshold )
2535 {
2536  METHOD( "CLUFactor::eliminateNucleus()" );
2537  int r, c;
2538  CLUFactor::Pring *pivot;
2539 
2540  if ( stat == SLinSolver::SINGULAR )
2541  return;
2542 
2543  temp.pivots.mkwtz = -1;
2544 
2545  temp.pivots.idx = -1;
2546 
2547  temp.pivots.pos = -1;
2548 
2549  while ( temp.stage < thedim - 1 )
2550  {
2551 #ifndef NDEBUG
2552  int i;
2553  // CLUFactorIsConsistent(fac);
2554 
2555  for ( i = 0; i < thedim; ++i )
2556  if ( col.perm[i] < 0 )
2557  assert( temp.s_mark[i] == 0 );
2558 
2559 #endif
2560 
2561  if ( temp.pivot_rowNZ[1].next != &( temp.pivot_rowNZ[1] ) )
2562  /* row singleton available */
2564  else
2565  if ( temp.pivot_colNZ[1].next != &( temp.pivot_colNZ[1] ) )
2566  /* column singleton available */
2568  else
2569  {
2570  initDR( temp.pivots );
2571  selectPivots( threshold );
2572 
2573  assert( temp.pivots.next != &temp.pivots &&
2574  "ERROR: no pivot element selected" );
2575 
2576  for ( pivot = temp.pivots.next; pivot != &temp.pivots;
2577  pivot = pivot->next )
2578  {
2579  eliminatePivot( pivot->idx, pivot->pos, eps );
2580  }
2581  }
2582 
2583  if ( temp.pivot_rowNZ->next != temp.pivot_rowNZ ||
2585  {
2587  return;
2588  }
2589  }
2590 
2591  if ( temp.stage < thedim )
2592  {
2593  /* Eliminate remaining element.
2594  * Note, that this must be both, column and row singleton.
2595  */
2596  assert( temp.pivot_rowNZ[1].next != &( temp.pivot_rowNZ[1] ) &&
2597  "ERROR: one row must be left" );
2598  assert( temp.pivot_colNZ[1].next != &( temp.pivot_colNZ[1] ) &&
2599  "ERROR: one col must be left" );
2600  r = temp.pivot_rowNZ[1].next->idx;
2601  c = temp.pivot_colNZ[1].next->idx;
2602  u.row.len[r] = 0;
2603  u.col.len[c]--;
2604  setPivot( temp.stage, c, r, u.row.val[u.row.start[r]] );
2605  }
2606 }
2607 
2608 /*****************************************************************************/
2609 
2611 {
2612  METHOD( "CLUFactor::setupColVals()" );
2613  int i;
2614  int n = thedim;
2615 
2616  if ( u.col.val != 0 )
2617  spx_free( u.col.val );
2618 
2619  // if we would know the old size of u.col.val, this could be a realloc.
2620  spx_alloc( u.col.val, u.col.size );
2621 
2622  for ( i = 0; i < thedim; i++ )
2623  u.col.len[i] = 0;
2624 
2625  maxabs = REAL( 0.0 );
2626 
2627  for ( i = 0; i < thedim; i++ )
2628  {
2629  int k = u.row.start[i];
2630  int* idx = &u.row.idx[k];
2631  Real* val = &u.row.val[k];
2632  int len = u.row.len[i];
2633 
2634  n += len;
2635 
2636  while ( len-- > 0 )
2637  {
2638  assert(( *idx >= 0 ) && ( *idx < thedim ) );
2639 
2640  k = u.col.start[*idx] + u.col.len[*idx];
2641 
2642  assert(( k >= 0 ) && ( k < u.col.size ) );
2643 
2644  u.col.len[*idx]++;
2645 
2646  assert( u.col.len[*idx] <= u.col.max[*idx] );
2647 
2648  u.col.idx[k] = i;
2649  u.col.val[k] = *val;
2650 
2651  if ( fabs( *val ) > maxabs )
2652  maxabs = fabs( *val );
2653 
2654  idx++;
2655 
2656  val++;
2657  }
2658  }
2659 
2660  return n;
2661 }
2662 
2663 /*****************************************************************************/
2664 
2665 #ifdef WITH_L_ROWS
2667 {
2668  METHOD( "CLUFactor::setupRowVals()" );
2669  int i, j, k, m;
2670  int vecs, mem;
2671  int* l_row;
2672  int* idx;
2673  Real* val;
2674  int* beg;
2675  int* l_ridx;
2676  Real* l_rval;
2677  int* l_rbeg;
2678  int* rorig;
2679  int* rrorig;
2680  int* rperm;
2681  int* rrperm;
2682 
2683  vecs = l.firstUpdate;
2684  l_row = l.row;
2685  idx = l.idx;
2686  val = l.val;
2687  beg = l.start;
2688  mem = beg[vecs];
2689 
2690  if ( l.rval )
2691  spx_free( l.rval );
2692 
2693  if ( l.ridx )
2694  spx_free( l.ridx );
2695 
2696  if ( l.rbeg )
2697  spx_free( l.rbeg );
2698 
2699  if ( l.rorig )
2700  spx_free( l.rorig );
2701 
2702  if ( l.rperm )
2703  spx_free( l.rperm );
2704 
2705  spx_alloc( l.rval, mem );
2706 
2707  spx_alloc( l.ridx, mem );
2708 
2709  spx_alloc( l.rbeg, thedim + 1 );
2710 
2711  spx_alloc( l.rorig, thedim );
2712 
2713  spx_alloc( l.rperm, thedim );
2714 
2715  l_ridx = l.ridx;
2716 
2717  l_rval = l.rval;
2718 
2719  l_rbeg = l.rbeg;
2720 
2721  rorig = l.rorig;
2722 
2723  rrorig = row.orig;
2724 
2725  rperm = l.rperm;
2726 
2727  rrperm = row.perm;
2728 
2729  for ( i = thedim; i--; *l_rbeg++ = 0 )
2730  {
2731  *rorig++ = *rrorig++;
2732  *rperm++ = *rrperm++;
2733  }
2734 
2735  *l_rbeg = 0;
2736 
2737  l_rbeg = l.rbeg + 1;
2738 
2739  for ( i = mem; i--; )
2740  l_rbeg[*idx++]++;
2741 
2742  idx = l.idx;
2743 
2744  for ( m = 0, i = thedim; i--; l_rbeg++ )
2745  {
2746  j = *l_rbeg;
2747  *l_rbeg = m;
2748  m += j;
2749  }
2750 
2751  assert( m == mem );
2752 
2753  l_rbeg = l.rbeg + 1;
2754 
2755  for ( i = j = 0; i < vecs; ++i )
2756  {
2757  m = l_row[i];
2758  assert( idx == &l.idx[l.start[i]] );
2759 
2760  for ( ; j < beg[i + 1]; j++ )
2761  {
2762  k = l_rbeg[*idx++]++;
2763  assert( k < mem );
2764  l_ridx[k] = m;
2765  l_rval[k] = *val++;
2766  }
2767  }
2768 
2769  assert( l.rbeg[thedim] == mem );
2770 
2771  assert( l.rbeg[0] == 0 );
2772 }
2773 
2774 #endif
2775 
2776 /*****************************************************************************/
2777 
2778 void CLUFactor::factor( const SVector** vec, ///< Array of column vector pointers
2779  Real threshold, ///< pivoting threshold
2780  Real eps ) ///< epsilon for zero detection
2781 {
2782  METHOD( "CLUFactor::factor()" );
2783 
2784  factorTime.start();
2785 
2786  stat = SLinSolver::OK;
2787 
2788  l.start[0] = 0;
2789  l.firstUpdate = 0;
2790  l.firstUnused = 0;
2791 
2792  temp.init( thedim );
2793  initPerm();
2794 
2795  initFactorMatrix( vec, eps );
2796 
2797  if ( stat )
2798  goto TERMINATE;
2799 
2800  // initMaxabs = initMaxabs;
2801 
2802  colSingletons();
2803 
2804  if ( stat != SLinSolver::OK )
2805  goto TERMINATE;
2806 
2807  rowSingletons();
2808 
2809  if ( stat != SLinSolver::OK )
2810  goto TERMINATE;
2811 
2812  if ( temp.stage < thedim )
2813  {
2814  initFactorRings();
2815  eliminateNucleus( eps, threshold );
2816  freeFactorRings();
2817  }
2818 
2819 TERMINATE:
2820 
2822 
2823  if ( stat == SLinSolver::OK )
2824  {
2825 #ifdef WITH_L_ROWS
2826  setupRowVals();
2827 #endif
2828  nzCnt = setupColVals();
2829  }
2830 
2831  factorTime.stop();
2832 
2833  factorCount++;
2834 }
2835 
2836 void CLUFactor::dump() const
2837 {
2838  METHOD( "CLUFactor::dump()" );
2839  int i, j, k;
2840 
2841  // Dump regardless of the verbosity level if this method is called;
2842  // store the old level and restore it at the end of the method.
2843  const SPxOut::Verbosity tmp_verbosity = spxout.getVerbosity();
2845 
2846  /* Dump U:
2847  */
2848 
2849  for ( i = 0; i < thedim; ++i )
2850  {
2851  if ( row.perm[i] >= 0 )
2852  spxout << "DCLUFA01 diag[" << i << "]: [" << col.orig[row.perm[i]]
2853  << "] = " << diag[i] << std::endl;
2854 
2855  for ( j = 0; j < u.row.len[i]; ++j )
2856  spxout << "DCLUFA02 u[" << i << "]: ["
2857  << u.row.idx[u.row.start[i] + j] << "] = "
2858  << u.row.val[u.row.start[i] + j] << std::endl;
2859  }
2860 
2861  /* Dump L:
2862  */
2863  for ( i = 0; i < thedim; ++i )
2864  {
2865  for ( j = 0; j < l.firstUnused; ++j )
2866  if ( col.orig[row.perm[l.row[j]]] == i )
2867  {
2868  spxout << "DCLUFA03 l[" << i << "]" << std::endl;
2869 
2870  for ( k = l.start[j]; k < l.start[j + 1]; ++k )
2871  spxout << "DCLUFA04 l[" << k - l.start[j]
2872  << "]: [" << l.idx[k]
2873  << "] = " << l.val[k] << std::endl;
2874 
2875  break;
2876  }
2877  }
2878 
2879  spxout.setVerbosity( tmp_verbosity );
2880 
2881  return;
2882 }
2883 
2884 /*****************************************************************************/
2885 /*
2886  * Ensure that row memory is at least size.
2887  */
2888 void CLUFactor::minRowMem( int size )
2889 {
2890  METHOD( "CLUFactor::minRowMem()" );
2891 
2892  if ( u.row.size < size )
2893  {
2894  u.row.size = size;
2895  spx_realloc( u.row.val, size );
2896  spx_realloc( u.row.idx, size );
2897  }
2898 }
2899 
2900 /*****************************************************************************/
2901 /*
2902  * Ensure that column memory is at least size.
2903  */
2904 void CLUFactor::minColMem( int size )
2905 {
2906  METHOD( "CLUFactor::minColMem()" );
2907 
2908  if ( u.col.size < size )
2909  {
2910  u.col.size = size;
2911  spx_realloc( u.col.idx, size );
2912  }
2913 }
2914 
2916 {
2917  METHOD( "CLUFactor::forestMinColMem()" );
2918 
2919  if ( u.col.size < size )
2920  {
2921  u.col.size = size;
2922  spx_realloc( u.col.idx, size );
2923  spx_realloc( u.col.val, size );
2924  }
2925 }
2926 
2927 void CLUFactor::minLMem( int size )
2928 {
2929  METHOD( "CLUFactor::minLMem()" );
2930 
2931  if ( size > l.size )
2932  {
2933  l.size = int( 0.2 * l.size + size );
2934  spx_realloc( l.val, l.size );
2935  spx_realloc( l.idx, l.size );
2936  }
2937 }
2938 
2939 
2940 int CLUFactor::makeLvec( int p_len, int p_row )
2941 {
2942  METHOD( "CLUFactor::makeLvec()" );
2943 
2944  if ( l.firstUnused >= l.startSize )
2945  {
2946  l.startSize += 100;
2948  }
2949 
2950  int* p_lrow = l.row;
2951 
2952  int* p_lbeg = l.start;
2953  int first = p_lbeg[l.firstUnused];
2954 
2955  assert( p_len > 0 && "ERROR: no empty columns allowed in L vectors" );
2956 
2957  minLMem( first + p_len );
2958  p_lrow[l.firstUnused] = p_row;
2959  l.start[++( l.firstUnused )] = first + p_len;
2960 
2961  assert( l.start[l.firstUnused] <= l.size );
2962  assert( l.firstUnused <= l.startSize );
2963  return first;
2964 }
2965 
2966 
2967 /*****************************************************************************/
2968 
2970 {
2971 #ifdef ENABLE_CONSISTENCY_CHECKS
2972  METHOD( "CLUFactor::isConsistent()" );
2973  int i, j, k, ll;
2974  Dring *ring;
2975  CLUFactor::Pring *pring;
2976 
2977  /* Consistency only relevant for real factorizations
2978  */
2979 
2980  if ( stat )
2981  return true;
2982 
2983  /* Test column ring list consistency.
2984  */
2985  i = 0;
2986 
2987  for ( ring = u.col.list.next; ring != &( u.col.list ); ring = ring->next )
2988  {
2989  assert( ring->idx >= 0 );
2990  assert( ring->idx < thedim );
2991  assert( ring->prev->next == ring );
2992 
2993  if ( ring != u.col.list.next )
2994  {
2995  assert( u.col.start[ring->prev->idx] + u.col.max[ring->prev->idx]
2996  == u.col.start[ring->idx] );
2997  }
2998 
2999  ++i;
3000  }
3001 
3002  assert( i == thedim );
3003 
3004  assert( u.col.start[ring->prev->idx] + u.col.max[ring->prev->idx]
3005  == u.col.used );
3006 
3007 
3008  /* Test row ring list consistency.
3009  */
3010  i = 0;
3011 
3012  for ( ring = u.row.list.next; ring != &( u.row.list ); ring = ring->next )
3013  {
3014  assert( ring->idx >= 0 );
3015  assert( ring->idx < thedim );
3016  assert( ring->prev->next == ring );
3017  assert( u.row.start[ring->prev->idx] + u.row.max[ring->prev->idx]
3018  == u.row.start[ring->idx] );
3019  ++i;
3020  }
3021 
3022  assert( i == thedim );
3023 
3024  assert( u.row.start[ring->prev->idx] + u.row.max[ring->prev->idx]
3025  == u.row.used );
3026 
3027 
3028  /* Test consistency of individual svectors.
3029  */
3030 
3031  for ( i = 0; i < thedim; ++i )
3032  {
3033  assert( u.row.max[i] >= u.row.len[i] );
3034  assert( u.col.max[i] >= u.col.len[i] );
3035  }
3036 
3037 
3038  /* Test consistency of column file to row file of U
3039  */
3040  for ( i = 0; i < thedim; ++i )
3041  {
3042  for ( j = u.row.start[i] + u.row.len[i] - 1; j >= u.row.start[i]; j-- )
3043  {
3044  k = u.row.idx[j];
3045 
3046  for ( ll = u.col.start[k] + u.col.len[k] - 1; ll >= u.col.start[k]; ll-- )
3047  {
3048  if ( u.col.idx[ll] == i )
3049  break;
3050  }
3051 
3052  assert( u.col.idx[ll] == i );
3053 
3054  if ( row.perm[i] < 0 )
3055  {
3056  assert( col.perm[k] < 0 );
3057  }
3058  else
3059  {
3060  assert( col.perm[k] < 0 || col.perm[k] > row.perm[i] );
3061  }
3062  }
3063  }
3064 
3065  /* Test consistency of row file to column file of U
3066  */
3067  for ( i = 0; i < thedim; ++i )
3068  {
3069  for ( j = u.col.start[i] + u.col.len[i] - 1; j >= u.col.start[i]; j-- )
3070  {
3071  k = u.col.idx[j];
3072 
3073  for ( ll = u.row.start[k] + u.row.len[k] - 1; ll >= u.row.start[k]; ll-- )
3074  {
3075  if ( u.row.idx[ll] == i )
3076  break;
3077  }
3078 
3079  assert( u.row.idx[ll] == i );
3080 
3081  assert( col.perm[i] < 0 || row.perm[k] < col.perm[i] );
3082  }
3083  }
3084 
3085  /* Test consistency of nonzero count lists
3086  */
3087  if ( temp.pivot_colNZ && temp.pivot_rowNZ )
3088  {
3089  for ( i = 0; i < thedim - temp.stage; ++i )
3090  {
3091  for ( pring = temp.pivot_rowNZ[i].next; pring != &( temp.pivot_rowNZ[i] ); pring = pring->next )
3092  {
3093  assert( row.perm[pring->idx] < 0 );
3094  }
3095 
3096  for ( pring = temp.pivot_colNZ[i].next; pring != &( temp.pivot_colNZ[i] ); pring = pring->next )
3097  {
3098  assert( col.perm[pring->idx] < 0 );
3099  }
3100  }
3101  }
3102 
3103 #if 0 // Stimmt leider nicht
3104  /* Test on L
3105  */
3106  if ( l.rval != 0 && l.firstUnused > 0 )
3107  {
3108  for ( i = 0; i < thedim; i++ )
3109  {
3110  assert( l.rbeg[i] >= 0 );
3111  assert( l.rbeg[i] <= l.firstUpdate );
3112  assert( l.rbeg[i] <= l.rbeg[i + 1] );
3113 
3114  assert( l.rorig[i] >= 0 );
3115  assert( l.rorig[i] < thedim );
3116  assert( l.rperm[i] >= 0 );
3117  assert( l.rperm[i] < thedim );
3118 
3119  assert( l.ridx[i] >= 0 );
3120  assert( l.ridx[i] < thedim );
3121  }
3122  }
3123 
3124 #endif
3125 #endif // CONSISTENCY_CHECKS
3126 
3127  return true;
3128 }
3129 
3130 void CLUFactor::solveUright( Real* wrk, Real* vec ) const
3131 {
3132  METHOD( "CLUFactor::solveUright()" );
3133 
3134  for ( int i = thedim - 1; i >= 0; i-- )
3135  {
3136  int r = row.orig[i];
3137  int c = col.orig[i];
3138  Real x = wrk[c] = diag[r] * vec[r];
3139 
3140  vec[r] = 0.0;
3141 
3142  if ( x != 0.0 )
3143  //if (isNotZero(x))
3144  {
3145  for ( int j = u.col.start[c]; j < u.col.start[c] + u.col.len[c]; j++ )
3146  vec[u.col.idx[j]] -= x * u.col.val[j];
3147  }
3148  }
3149 }
3150 
3151 int CLUFactor::solveUrightEps( Real* vec, int* nonz, Real eps, Real* rhs )
3152 {
3153  METHOD( "CLUFactor::solveUrightEps()" );
3154  int i, j, r, c, n;
3155  int *rorig, *corig;
3156  int *cidx, *clen, *cbeg;
3157  Real *cval;
3158  Real x;
3159 
3160  int *idx;
3161  Real *val;
3162 
3163  rorig = row.orig;
3164  corig = col.orig;
3165 
3166  cidx = u.col.idx;
3167  cval = u.col.val;
3168  clen = u.col.len;
3169  cbeg = u.col.start;
3170 
3171  n = 0;
3172 
3173  for ( i = thedim - 1; i >= 0; --i )
3174  {
3175  r = rorig[i];
3176  x = diag[r] * rhs[r];
3177 
3178  if ( isNotZero( x, eps ) )
3179  {
3180  c = corig[i];
3181  vec[c] = x;
3182  nonz[n++] = c;
3183  val = &cval[cbeg[c]];
3184  idx = &cidx[cbeg[c]];
3185  j = clen[c];
3186 
3187  while ( j-- > 0 )
3188  rhs[*idx++] -= x * ( *val++ );
3189  }
3190  }
3191 
3192  return n;
3193 }
3194 
3196  Real* p_work1, Real* vec1, Real* p_work2, Real* vec2 )
3197 {
3198  METHOD( "CLUFactor::solveUright2()" );
3199  int i, j, r, c;
3200  int *rorig, *corig;
3201  int *cidx, *clen, *cbeg;
3202  Real *cval;
3203  Real x1, x2;
3204 
3205  int* idx;
3206  Real* val;
3207 
3208  rorig = row.orig;
3209  corig = col.orig;
3210 
3211  cidx = u.col.idx;
3212  cval = u.col.val;
3213  clen = u.col.len;
3214  cbeg = u.col.start;
3215 
3216  for ( i = thedim - 1; i >= 0; --i )
3217  {
3218  r = rorig[i];
3219  c = corig[i];
3220  p_work1[c] = x1 = diag[r] * vec1[r];
3221  p_work2[c] = x2 = diag[r] * vec2[r];
3222  vec1[r] = vec2[r] = 0;
3223 
3224  if ( x1 != 0.0 && x2 != 0.0 )
3225  {
3226  val = &cval[cbeg[c]];
3227  idx = &cidx[cbeg[c]];
3228  j = clen[c];
3229 
3230  while ( j-- > 0 )
3231  {
3232  vec1[*idx] -= x1 * ( *val );
3233  vec2[*idx++] -= x2 * ( *val++ );
3234  }
3235  }
3236  else
3237  if ( x1 != 0.0 )
3238  {
3239  val = &cval[cbeg[c]];
3240  idx = &cidx[cbeg[c]];
3241  j = clen[c];
3242 
3243  while ( j-- > 0 )
3244  vec1[*idx++] -= x1 * ( *val++ );
3245  }
3246  else
3247  if ( x2 != 0.0 )
3248  {
3249  val = &cval[cbeg[c]];
3250  idx = &cidx[cbeg[c]];
3251  j = clen[c];
3252 
3253  while ( j-- > 0 )
3254  vec2[*idx++] -= x2 * ( *val++ );
3255  }
3256  }
3257 }
3258 
3260  Real* p_work1, Real* vec1, Real* p_work2, Real* vec2,
3261  int* nonz, Real eps )
3262 {
3263  METHOD( "CLUFactor::solveUright2eps()" );
3264  int i, j, r, c, n;
3265  int *rorig, *corig;
3266  int *cidx, *clen, *cbeg;
3267  bool notzero1, notzero2;
3268  Real *cval;
3269  Real x1, x2;
3270 
3271  int* idx;
3272  Real* val;
3273 
3274  rorig = row.orig;
3275  corig = col.orig;
3276 
3277  cidx = u.col.idx;
3278  cval = u.col.val;
3279  clen = u.col.len;
3280  cbeg = u.col.start;
3281 
3282  n = 0;
3283 
3284  for ( i = thedim - 1; i >= 0; --i )
3285  {
3286  c = corig[i];
3287  r = rorig[i];
3288  p_work1[c] = x1 = diag[r] * vec1[r];
3289  p_work2[c] = x2 = diag[r] * vec2[r];
3290  vec1[r] = vec2[r] = 0;
3291  notzero1 = isNotZero( x1, eps );
3292  notzero2 = isNotZero( x2, eps );
3293 
3294  if ( notzero1 && notzero2 )
3295  {
3296  *nonz++ = c;
3297  n++;
3298  val = &cval[cbeg[c]];
3299  idx = &cidx[cbeg[c]];
3300  j = clen[c];
3301 
3302  while ( j-- > 0 )
3303  {
3304  vec1[*idx] -= x1 * ( *val );
3305  vec2[*idx++] -= x2 * ( *val++ );
3306  }
3307  }
3308  else
3309  if ( notzero1 )
3310  {
3311  p_work2[c] = 0;
3312  *nonz++ = c;
3313  n++;
3314  val = &cval[cbeg[c]];
3315  idx = &cidx[cbeg[c]];
3316  j = clen[c];
3317 
3318  while ( j-- > 0 )
3319  vec1[*idx++] -= x1 * ( *val++ );
3320  }
3321  else
3322  if ( notzero2 )
3323  {
3324  p_work1[c] = 0;
3325  val = &cval[cbeg[c]];
3326  idx = &cidx[cbeg[c]];
3327  j = clen[c];
3328 
3329  while ( j-- > 0 )
3330  vec2[*idx++] -= x2 * ( *val++ );
3331  }
3332  else
3333  {
3334  p_work1[c] = 0;
3335  p_work2[c] = 0;
3336  }
3337  }
3338 
3339  return n;
3340 }
3341 
3343 {
3344  METHOD( "CLUFactor::solveLright()" );
3345  int i, j, k;
3346  int end;
3347  Real x;
3348  Real *lval, *val;
3349  int *lrow, *lidx, *idx;
3350  int *lbeg;
3351 
3352  lval = l.val;
3353  lidx = l.idx;
3354  lrow = l.row;
3355  lbeg = l.start;
3356 
3357  end = l.firstUpdate;
3358 
3359  for ( i = 0; i < end; ++i )
3360  {
3361  if (( x = vec[lrow[i]] ) != 0.0 )
3362  {
3363  MSG_DEBUG( spxout << "y" << lrow[i] << "=" << vec[lrow[i]] << std::endl; )
3364 
3365  k = lbeg[i];
3366  idx = &( lidx[k] );
3367  val = &( lval[k] );
3368 
3369  for ( j = lbeg[i + 1]; j > k; --j )
3370  {
3371  MSG_DEBUG( spxout << " -> y" << *idx << " -= " << x << " * " << *val << " = " << x * ( *val ) << " -> " << vec[*idx] - x * ( *val ) << std::endl; )
3372  vec[*idx++] -= x * ( *val++ );
3373  }
3374  }
3375  }
3376 
3377  if ( l.updateType ) /* Forest-Tomlin Updates */
3378  {
3379  MSG_DEBUG( spxout << "performing FT updates..." << std::endl; )
3380 
3381  end = l.firstUnused;
3382 
3383  for ( ; i < end; ++i )
3384  {
3385  x = 0;
3386  k = lbeg[i];
3387  idx = &( lidx[k] );
3388  val = &( lval[k] );
3389 
3390  for ( j = lbeg[i + 1]; j > k; --j )
3391  x += vec[*idx++] * ( *val++ );
3392 
3393  vec[lrow[i]] -= x;
3394 
3395  MSG_DEBUG( spxout << "y" << lrow[i] << "=" << vec[lrow[i]] << std::endl; )
3396  }
3397 
3398  MSG_DEBUG( spxout << "finished FT updates." << std::endl; )
3399  }
3400 }
3401 
3402 void CLUFactor::solveLright2( Real* vec1, Real* vec2 )
3403 {
3404  METHOD( "CLUFactor::solveLright2()" );
3405  int i, j, k;
3406  int end;
3407  Real x2;
3408  Real x1;
3409  Real *lval, *val;
3410  int *lrow, *lidx, *idx;
3411  int *lbeg;
3412 
3413  lval = l.val;
3414  lidx = l.idx;
3415  lrow = l.row;
3416  lbeg = l.start;
3417 
3418  end = l.firstUpdate;
3419 
3420  for ( i = 0; i < end; ++i )
3421  {
3422  x1 = vec1[lrow[i]];
3423  x2 = vec2[lrow[i]];
3424 
3425  if ( x1 != 0 && x2 != 0.0 )
3426  {
3427  k = lbeg[i];
3428  idx = &( lidx[k] );
3429  val = &( lval[k] );
3430 
3431  for ( j = lbeg[i + 1]; j > k; --j )
3432  {
3433  vec1[*idx] -= x1 * ( *val );
3434  vec2[*idx++] -= x2 * ( *val++ );
3435  }
3436  }
3437  else
3438  if ( x1 != 0.0 )
3439  {
3440  k = lbeg[i];
3441  idx = &( lidx[k] );
3442  val = &( lval[k] );
3443 
3444  for ( j = lbeg[i + 1]; j > k; --j )
3445  vec1[*idx++] -= x1 * ( *val++ );
3446  }
3447  else
3448  if ( x2 != 0.0 )
3449  {
3450  k = lbeg[i];
3451  idx = &( lidx[k] );
3452  val = &( lval[k] );
3453 
3454  for ( j = lbeg[i + 1]; j > k; --j )
3455  vec2[*idx++] -= x2 * ( *val++ );
3456  }
3457  }
3458 
3459  if ( l.updateType ) /* Forest-Tomlin Updates */
3460  {
3461  end = l.firstUnused;
3462 
3463  for ( ; i < end; ++i )
3464  {
3465  x1 = 0;
3466  x2 = 0;
3467  k = lbeg[i];
3468  idx = &( lidx[k] );
3469  val = &( lval[k] );
3470 
3471  for ( j = lbeg[i + 1]; j > k; --j )
3472  {
3473  x1 += vec1[*idx] * ( *val );
3474  x2 += vec2[*idx++] * ( *val++ );
3475  }
3476 
3477  vec1[lrow[i]] -= x1;
3478 
3479  vec2[lrow[i]] -= x2;
3480  }
3481  }
3482 }
3483 
3485 {
3486  METHOD( "CLUFactor::solveUpdateRight()" );
3487  int i, j, k;
3488  int end;
3489  Real x;
3490  Real *lval, *val;
3491  int *lrow, *lidx, *idx;
3492  int *lbeg;
3493 
3494  assert( !l.updateType ); /* no Forest-Tomlin Updates */
3495 
3496  lval = l.val;
3497  lidx = l.idx;
3498  lrow = l.row;
3499  lbeg = l.start;
3500 
3501  end = l.firstUnused;
3502 
3503  for ( i = l.firstUpdate; i < end; ++i )
3504  {
3505  if (( x = vec[lrow[i]] ) != 0.0 )
3506  {
3507  k = lbeg[i];
3508  idx = &( lidx[k] );
3509  val = &( lval[k] );
3510 
3511  for ( j = lbeg[i + 1]; j > k; --j )
3512  vec[*idx++] -= x * ( *val++ );
3513  }
3514  }
3515 }
3516 
3518 {
3519  METHOD( "CLUFactor::solveUpdateRight2()" );
3520  int i, j, k;
3521  int end;
3522  Real x1, x2;
3523  Real *lval;
3524  int *lrow, *lidx;
3525  int *lbeg;
3526 
3527  int* idx;
3528  Real* val;
3529 
3530  assert( !l.updateType ); /* no Forest-Tomlin Updates */
3531 
3532  lval = l.val;
3533  lidx = l.idx;
3534  lrow = l.row;
3535  lbeg = l.start;
3536 
3537  end = l.firstUnused;
3538 
3539  for ( i = l.firstUpdate; i < end; ++i )
3540  {
3541  x1 = vec1[lrow[i]];
3542  x2 = vec2[lrow[i]];
3543 
3544  if ( x1 != 0.0 && x2 != 0.0 )
3545  {
3546  k = lbeg[i];
3547  idx = &( lidx[k] );
3548  val = &( lval[k] );
3549 
3550  for ( j = lbeg[i + 1]; j > k; --j )
3551  {
3552  vec1[*idx] -= x1 * ( *val );
3553  vec2[*idx++] -= x2 * ( *val++ );
3554  }
3555  }
3556  else
3557  if ( x1 != 0.0 )
3558  {
3559  k = lbeg[i];
3560  idx = &( lidx[k] );
3561  val = &( lval[k] );
3562 
3563  for ( j = lbeg[i + 1]; j > k; --j )
3564  vec1[*idx++] -= x1 * ( *val++ );
3565  }
3566  else
3567  if ( x2 != 0.0 )
3568  {
3569  k = lbeg[i];
3570  idx = &( lidx[k] );
3571  val = &( lval[k] );
3572 
3573  for ( j = lbeg[i + 1]; j > k; --j )
3574  vec2[*idx++] -= x2 * ( *val++ );
3575  }
3576  }
3577 }
3578 
3579 int CLUFactor::solveRight4update( Real* vec, int* nonz, Real eps,
3580  Real* rhs, Real* forest, int* forestNum, int* forestIdx )
3581 {
3582  METHOD( "CLUFactor::solveRight4update()" );
3583  solveLright( rhs );
3584 
3585  if ( forest )
3586  {
3587  int n = 0;
3588 
3589  for ( int i = 0; i < thedim; i++ )
3590  {
3591  forestIdx[n] = i;
3592  forest[i] = rhs[i];
3593  n += rhs[i] != 0.0 ? 1 : 0;
3594  }
3595 
3596  *forestNum = n;
3597  }
3598 
3599  if ( !l.updateType ) /* no Forest-Tomlin Updates */
3600  {
3601  solveUright( vec, rhs );
3602  solveUpdateRight( vec );
3603  return 0;
3604  }
3605  else
3606  return solveUrightEps( vec, nonz, eps, rhs );
3607 }
3608 
3609 void CLUFactor::solveRight( Real* vec, Real* rhs )
3610 {
3611  METHOD( "CLUFactor::solveRight()" );
3612  solveLright( rhs );
3613  solveUright( vec, rhs );
3614 
3615  if ( !l.updateType ) /* no Forest-Tomlin Updates */
3616  solveUpdateRight( vec );
3617 }
3618 
3620  Real* vec2,
3621  Real* rhs1,
3622  Real* rhs2,
3623  int* nonz,
3624  Real eps,
3625  Real* forest,
3626  int* forestNum,
3627  int* forestIdx )
3628 {
3629  METHOD( "CLUFactor::solveRight2update()" );
3630  solveLright2( rhs1, rhs2 );
3631 
3632  if ( forest )
3633  {
3634  int n = 0;
3635 
3636  for ( int i = 0; i < thedim; i++ )
3637  {
3638  forestIdx[n] = i;
3639  forest[i] = rhs1[i];
3640  n += rhs1[i] != 0.0 ? 1 : 0;
3641  }
3642 
3643  *forestNum = n;
3644  }
3645 
3646  if ( !l.updateType ) /* no Forest-Tomlin Updates */
3647  {
3648  solveUright2( vec1, rhs1, vec2, rhs2 );
3649  solveUpdateRight2( vec1, vec2 );
3650  return 0;
3651  }
3652  else
3653  return solveUright2eps( vec1, rhs1, vec2, rhs2, nonz, eps );
3654 }
3655 
3657  Real* vec1,
3658  Real* vec2,
3659  Real* rhs1,
3660  Real* rhs2 )
3661 {
3662  METHOD( "CLUFactor::solveRight2()" );
3663  solveLright2( rhs1, rhs2 );
3664 
3665  if ( l.updateType ) /* Forest-Tomlin Updates */
3666  solveUright2( vec1, rhs1, vec2, rhs2 );
3667  else
3668  {
3669  solveUright2( vec1, rhs1, vec2, rhs2 );
3670  solveUpdateRight2( vec1, vec2 );
3671  }
3672 }
3673 
3674 /*****************************************************************************/
3675 #if 0
3676 void CLUFactor::solveUleft( Real* p_work, Real* vec )
3677 {
3678  METHOD( "CLUFactor::solveUleft()" );
3679  Real x;
3680  int i, k, r, c;
3681  int *rorig, *corig;
3682  int *ridx, *rlen, *rbeg, *idx;
3683  Real *rval, *val;
3684 
3685  rorig = row.orig;
3686  corig = col.orig;
3687 
3688  ridx = u.row.idx;
3689  rval = u.row.val;
3690  rlen = u.row.len;
3691  rbeg = u.row.start;
3692 
3693  for ( i = 0; i < thedim; ++i )
3694  {
3695  c = corig[i];
3696  r = rorig[i];
3697  x = vec[c];
3698  vec[c] = 0;
3699 
3700  if ( x != 0.0 )
3701  {
3702  x *= diag[r];
3703  p_work[r] = x;
3704  k = rbeg[r];
3705  idx = &ridx[k];
3706  val = &rval[k];
3707 
3708  for ( int m = rlen[r]; m != 0; --m )
3709  vec[*idx++] -= x * ( *val++ );
3710  }
3711  }
3712 }
3713 
3714 #else
3715 void CLUFactor::solveUleft( Real* p_work, Real* vec )
3716 {
3717  METHOD( "CLUFactor::solveUleft()" );
3718 #if 0
3719 
3720  for ( int i = 0; i < thedim; ++i )
3721  {
3722  int r = row.orig[i];
3723  int end = u.row.start[r] + u.row.len[r];
3724 
3725  for ( int m = u.row.start[r]; m < end; m++ )
3726  {
3727  std::cout << u.row.val[m] << " ";
3728  }
3729 
3730  std::cout << "\n";
3731  }
3732 
3733 #endif
3734  for ( int i = 0; i < thedim; ++i )
3735  {
3736  int c = col.orig[i];
3737  int r = row.orig[i];
3738 
3739  assert( c >= 0 ); // Inna/Tobi: otherwise, vec[c] would be strange...
3740  assert( r >= 0 ); // Inna/Tobi: otherwise, diag[r] would be strange...
3741 
3742  Real x = vec[c];
3743 
3744  ASSERT_WARN( "WSOLVE01", fabs( x ) < 1e40 );
3745  ASSERT_WARN( "WSOLVE02", fabs( vec[c] ) < 1e40 );
3746 
3747 #if defined(WITH_WARNINGS) || !defined(NDEBUG)
3748  Real y = vec[c];
3749 #endif
3750 
3751  vec[c] = 0.0;
3752 
3753  if ( x != 0.0 )
3754  {
3755  ASSERT_WARN( "WSOLVE03", fabs( diag[r] ) < 1e40 );
3756 
3757  x *= diag[r];
3758  p_work[r] = x;
3759 
3760  ASSERT_WARN( "WSOLVE04", fabs( x ) < 1e40 );
3761 
3762  int end = u.row.start[r] + u.row.len[r];
3763 
3764  for ( int m = u.row.start[r]; m < end; m++ )
3765  {
3766  ASSERT_WARN( "WSOLVE05", fabs( u.row.val[m] ) < 1e40 );
3767  ASSERT_WARN( "WSOLVE06", fabs( vec[u.row.idx[m]] ) < infinity );
3768  vec[u.row.idx[m]] -= x * u.row.val[m];
3769  ASSERT_WARN( "WSOLVE07", fabs( vec[u.row.idx[m]] ) < 1e40 );
3770  }
3771  }
3772 
3773  ASSERT_WARN( "WSOLVE08", fabs( y ) < 1e40 );
3774  }
3775 }
3776 
3777 #endif
3778 
3780  Real* p_work1, Real* vec1, Real* p_work2, Real* vec2 )
3781 {
3782  METHOD( "CLUFactor::solveUleft2()" );
3783  Real x1;
3784  Real x2;
3785  int i, k, r, c;
3786  int *rorig, *corig;
3787  int *ridx, *rlen, *rbeg, *idx;
3788  Real *rval, *val;
3789 
3790  rorig = row.orig;
3791  corig = col.orig;
3792 
3793  ridx = u.row.idx;
3794  rval = u.row.val;
3795  rlen = u.row.len;
3796  rbeg = u.row.start;
3797 
3798  for ( i = 0; i < thedim; ++i )
3799  {
3800  c = corig[i];
3801  r = rorig[i];
3802  x1 = vec1[c];
3803  x2 = vec2[c];
3804 
3805  if (( x1 != 0.0 ) && ( x2 != 0.0 ) )
3806  {
3807  x1 *= diag[r];
3808  x2 *= diag[r];
3809  p_work1[r] = x1;
3810  p_work2[r] = x2;
3811  k = rbeg[r];
3812  idx = &ridx[k];
3813  val = &rval[k];
3814 
3815  for ( int m = rlen[r]; m != 0; --m )
3816  {
3817  vec1[*idx] -= x1 * ( *val );
3818  vec2[*idx] -= x2 * ( *val++ );
3819  idx++;
3820  }
3821  }
3822  else
3823  if ( x1 != 0.0 )
3824  {
3825  x1 *= diag[r];
3826  p_work1[r] = x1;
3827  k = rbeg[r];
3828  idx = &ridx[k];
3829  val = &rval[k];
3830 
3831  for ( int m = rlen[r]; m != 0; --m )
3832  vec1[*idx++] -= x1 * ( *val++ );
3833  }
3834  else
3835  if ( x2 != 0.0 )
3836  {
3837  x2 *= diag[r];
3838  p_work2[r] = x2;
3839  k = rbeg[r];
3840  idx = &ridx[k];
3841  val = &rval[k];
3842 
3843  for ( int m = rlen[r]; m != 0; --m )
3844  vec2[*idx++] -= x2 * ( *val++ );
3845  }
3846  }
3847 }
3848 
3850  Real* vec1,
3851  int* /* nonz */,
3852  Real* vec2,
3853  Real /* eps */ )
3854 {
3855  METHOD( "CLUFactor::solveLleft2forest()" );
3856  int i;
3857  int j;
3858  int k;
3859  int end;
3860  Real x1, x2;
3861  Real *lval, *val;
3862  int *lidx, *idx, *lrow;
3863  int *lbeg;
3864 
3865  lval = l.val;
3866  lidx = l.idx;
3867  lrow = l.row;
3868  lbeg = l.start;
3869 
3870  end = l.firstUpdate;
3871 
3872  for ( i = l.firstUnused - 1; i >= end; --i )
3873  {
3874  j = lrow[i];
3875  x1 = vec1[j];
3876  x2 = vec2[j];
3877 
3878  if ( x1 != 0.0 )
3879  {
3880  if ( x2 != 0.0 )
3881  {
3882  k = lbeg[i];
3883  val = &lval[k];
3884  idx = &lidx[k];
3885 
3886  for ( j = lbeg[i + 1]; j > k; --j )
3887  {
3888  vec1[*idx] -= x1 * ( *val );
3889  vec2[*idx++] -= x2 * ( *val++ );
3890  }
3891  }
3892  else
3893  {
3894  k = lbeg[i];
3895  val = &lval[k];
3896  idx = &lidx[k];
3897 
3898  for ( j = lbeg[i + 1]; j > k; --j )
3899  vec1[*idx++] -= x1 * ( *val++ );
3900  }
3901  }
3902  else
3903  if ( x2 != 0.0 )
3904  {
3905  k = lbeg[i];
3906  val = &lval[k];
3907  idx = &lidx[k];
3908 
3909  for ( j = lbeg[i + 1]; j > k; --j )
3910  vec2[*idx++] -= x2 * ( *val++ );
3911  }
3912  }
3913 
3914  return 0;
3915 }
3916 
3918  Real* vec1,
3919  int* /* nonz */,
3920  Real* vec2,
3921  Real /* eps */ )
3922 {
3923  METHOD( "CLUFactor::solveLleft2()" );
3924  int i, j, k, r;
3925  int x1not0, x2not0;
3926  Real x1, x2;
3927 
3928  Real *rval, *val;
3929  int *ridx, *idx;
3930  int *rbeg;
3931  int *rorig;
3932 
3933  ridx = l.ridx;
3934  rval = l.rval;
3935  rbeg = l.rbeg;
3936  rorig = l.rorig;
3937 
3938 #ifndef WITH_L_ROWS
3939  Real* lval = l.val;
3940  int* lidx = l.idx;
3941  int* lrow = l.row;
3942  int* lbeg = l.start;
3943 
3944  i = l.firstUpdate - 1;
3945 
3946  for ( ; i >= 0; --i )
3947  {
3948  k = lbeg[i];
3949  val = &lval[k];
3950  idx = &lidx[k];
3951  x1 = 0;
3952  x2 = 0;
3953 
3954  for ( j = lbeg[i + 1]; j > k; --j )
3955  {
3956  x1 += vec1[*idx] * ( *val );
3957  x2 += vec2[*idx++] * ( *val++ );
3958  }
3959 
3960  vec1[lrow[i]] -= x1;
3961 
3962  vec2[lrow[i]] -= x2;
3963  }
3964 
3965 #else
3966  for ( i = thedim; i--; )
3967  {
3968  r = rorig[i];
3969  x1 = vec1[r];
3970  x2 = vec2[r];
3971  x1not0 = ( x1 != 0 );
3972  x2not0 = ( x2 != 0 );
3973 
3974  if ( x1not0 && x2not0 )
3975  {
3976  k = rbeg[r];
3977  j = rbeg[r + 1] - k;
3978  val = &rval[k];
3979  idx = &ridx[k];
3980 
3981  while ( j-- > 0 )
3982  {
3983  assert( row.perm[*idx] < i );
3984  vec1[*idx] -= x1 * *val;
3985  vec2[*idx++] -= x2 * *val++;
3986  }
3987  }
3988  else
3989  if ( x1not0 )
3990  {
3991  k = rbeg[r];
3992  j = rbeg[r + 1] - k;
3993  val = &rval[k];
3994  idx = &ridx[k];
3995 
3996  while ( j-- > 0 )
3997  {
3998  assert( row.perm[*idx] < i );
3999  vec1[*idx++] -= x1 * *val++;
4000  }
4001  }
4002  else
4003  if ( x2not0 )
4004  {
4005  k = rbeg[r];
4006  j = rbeg[r + 1] - k;
4007  val = &rval[k];
4008  idx = &ridx[k];
4009 
4010  while ( j-- > 0 )
4011  {
4012  assert( row.perm[*idx] < i );
4013  vec2[*idx++] -= x2 * *val++;
4014  }
4015  }
4016  }
4017 
4018 #endif
4019 }
4020 
4021 int CLUFactor::solveLleftForest( Real* vec, int* /* nonz */, Real /* eps */ )
4022 {
4023  METHOD( "CLUFactor::solveLleftForest()" );
4024  int i, j, k, end;
4025  Real x;
4026  Real *val, *lval;
4027  int *idx, *lidx, *lrow, *lbeg;
4028 
4029  lval = l.val;
4030  lidx = l.idx;
4031  lrow = l.row;
4032  lbeg = l.start;
4033 
4034  end = l.firstUpdate;
4035 
4036  for ( i = l.firstUnused - 1; i >= end; --i )
4037  {
4038  if (( x = vec[lrow[i]] ) != 0.0 )
4039  {
4040  k = lbeg[i];
4041  val = &lval[k];
4042  idx = &lidx[k];
4043 
4044  for ( j = lbeg[i + 1]; j > k; --j )
4045  vec[*idx++] -= x * ( *val++ );
4046  }
4047  }
4048 
4049  return 0;
4050 }
4051 
4052 void CLUFactor::solveLleft( Real* vec ) const
4053 {
4054  METHOD( "CLUFactor::solveLleft()" );
4055 
4056 #ifndef WITH_L_ROWS
4057  int* idx;
4058  Real* val;
4059  Real* lval = l.val;
4060  int* lidx = l.idx;
4061  int* lrow = l.row;
4062  int* lbeg = l.start;
4063 
4064  for ( int i = l.firstUpdate - 1; i >= 0; --i )
4065  {
4066  int k = lbeg[i];
4067  val = &lval[k];
4068  idx = &lidx[k];
4069  x = 0;
4070 
4071  for ( int j = lbeg[i + 1]; j > k; --j )
4072  x += vec[*idx++] * ( *val++ );
4073 
4074  vec[lrow[i]] -= x;
4075  }
4076 
4077 #else
4078  for ( int i = thedim - 1; i >= 0; --i )
4079  {
4080  int r = l.rorig[i];
4081  Real x = vec[r];
4082 
4083  if ( x != 0.0 )
4084  {
4085  for ( int k = l.rbeg[r]; k < l.rbeg[r + 1]; k++ )
4086  {
4087  int j = l.ridx[k];
4088 
4089  assert( l.rperm[j] < i );
4090 
4091  vec[j] -= x * l.rval[k];
4092  }
4093  }
4094  }
4095 
4096 #endif // WITH_L_ROWS
4097 }
4098 
4099 int CLUFactor::solveLleftEps( Real* vec, int* nonz, Real eps )
4100 {
4101  METHOD( "CLUFactor::solveLleftEps()" );
4102  int i, j, k, n;
4103  int r;
4104  Real x;
4105  Real *rval, *val;
4106  int *ridx, *idx;
4107  int *rbeg;
4108  int* rorig;
4109 
4110  ridx = l.ridx;
4111  rval = l.rval;
4112  rbeg = l.rbeg;
4113  rorig = l.rorig;
4114  n = 0;
4115 #ifndef WITH_L_ROWS
4116  Real* lval = l.val;
4117  int* lidx = l.idx;
4118  int* lrow = l.row;
4119  int* lbeg = l.start;
4120 
4121  for ( i = l.firstUpdate - 1; i >= 0; --i )
4122  {
4123  k = lbeg[i];
4124  val = &lval[k];
4125  idx = &lidx[k];
4126  x = 0;
4127 
4128  for ( j = lbeg[i + 1]; j > k; --j )
4129  x += vec[*idx++] * ( *val++ );
4130 
4131  vec[lrow[i]] -= x;
4132  }
4133 
4134 #else
4135  for ( i = thedim; i--; )
4136  {
4137  r = rorig[i];
4138  x = vec[r];
4139 
4140  if ( isNotZero( x, eps ) )
4141  {
4142  *nonz++ = r;
4143  n++;
4144  k = rbeg[r];
4145  j = rbeg[r + 1] - k;
4146  val = &rval[k];
4147  idx = &ridx[k];
4148 
4149  while ( j-- > 0 )
4150  {
4151  assert( row.perm[*idx] < i );
4152  vec[*idx++] -= x * *val++;
4153  }
4154  }
4155  else
4156  vec[r] = 0;
4157  }
4158 
4159 #endif
4160 
4161  return n;
4162 }
4163 
4165 {
4166  METHOD( "CLUFactor::solveUpdateLeft()" );
4167  int i, j, k, end;
4168  Real x;
4169  Real *lval, *val;
4170  int *lrow, *lidx, *idx;
4171  int *lbeg;
4172 
4173  lval = l.val;
4174  lidx = l.idx;
4175  lrow = l.row;
4176  lbeg = l.start;
4177 
4178  assert( !l.updateType ); /* Forest-Tomlin Updates */
4179 
4180  end = l.firstUpdate;
4181 
4182  for ( i = l.firstUnused - 1; i >= end; --i )
4183  {
4184  k = lbeg[i];
4185  val = &lval[k];
4186  idx = &lidx[k];
4187  x = 0;
4188 
4189  for ( j = lbeg[i + 1]; j > k; --j )
4190  x += vec[*idx++] * ( *val++ );
4191 
4192  vec[lrow[i]] -= x;
4193  }
4194 }
4195 
4197 {
4198  METHOD( "CLUFactor::solveUpdateLeft2()" );
4199  int i, j, k, end;
4200  Real x1, x2;
4201  Real *lval, *val;
4202  int *lrow, *lidx, *idx;
4203  int *lbeg;
4204 
4205  lval = l.val;
4206  lidx = l.idx;
4207  lrow = l.row;
4208  lbeg = l.start;
4209 
4210  assert( !l.updateType ); /* Forest-Tomlin Updates */
4211 
4212  end = l.firstUpdate;
4213 
4214  for ( i = l.firstUnused - 1; i >= end; --i )
4215  {
4216  k = lbeg[i];
4217  val = &lval[k];
4218  idx = &lidx[k];
4219  x1 = 0;
4220  x2 = 0;
4221 
4222  for ( j = lbeg[i + 1]; j > k; --j )
4223  {
4224  x1 += vec1[*idx] * ( *val );
4225  x2 += vec2[*idx++] * ( *val++ );
4226  }
4227 
4228  vec1[lrow[i]] -= x1;
4229 
4230  vec2[lrow[i]] -= x2;
4231  }
4232 }
4233 
4234 int CLUFactor::solveUpdateLeft( Real eps, Real* vec, int* nonz, int n )
4235 {
4236  METHOD( "CLUFactor::solveUpdateLeft()" );
4237  int i, j, k, end;
4238  Real x, y;
4239  Real *lval, *val;
4240  int *lrow, *lidx, *idx;
4241  int *lbeg;
4242 
4243  assert( !l.updateType ); /* no Forest-Tomlin Updates! */
4244 
4245  lval = l.val;
4246  lidx = l.idx;
4247  lrow = l.row;
4248  lbeg = l.start;
4249 
4250  end = l.firstUpdate;
4251 
4252  for ( i = l.firstUnused - 1; i >= end; --i )
4253  {
4254  k = lbeg[i];
4255  assert( k >= 0 && k < l.size );
4256  val = &lval[k];
4257  idx = &lidx[k];
4258  x = 0;
4259 
4260  for ( j = lbeg[i + 1]; j > k; --j )
4261  {
4262  assert( *idx >= 0 && *idx < thedim );
4263  x += vec[*idx++] * ( *val++ );
4264  }
4265 
4266  k = lrow[i];
4267 
4268  y = vec[k];
4269 
4270  if ( y == 0 )
4271  {
4272  y = -x;
4273 
4274  if ( isNotZero( y, eps ) )
4275  {
4276  nonz[n++] = k;
4277  vec[k] = y;
4278  }
4279  }
4280  else
4281  {
4282  y -= x;
4283  vec[k] = ( y != 0 ) ? y : MARKER;
4284  }
4285  }
4286 
4287  return n;
4288 }
4289 
4290 void CLUFactor::solveLeft( Real* vec, Real* rhs )
4291 {
4292  METHOD( "CLUFactor::solveLeft()" );
4293 
4294  if ( !l.updateType ) /* no Forest-Tomlin Updates */
4295  {
4296  solveUpdateLeft( rhs );
4297  solveUleft( vec, rhs );
4298  solveLleft( vec );
4299  }
4300  else
4301  {
4302  solveUleft( vec, rhs );
4303  //@todo is 0.0 the right value for eps here ?
4304  solveLleftForest( vec, 0, 0.0 );
4305  solveLleft( vec );
4306  }
4307 }
4308 
4309 int CLUFactor::solveLeftEps( Real* vec, Real* rhs, int* nonz, Real eps )
4310 {
4311  METHOD( "CLUFactor::solveLeftEps()" );
4312 
4313  if ( !l.updateType ) /* no Forest-Tomlin Updates */
4314  {
4315  solveUpdateLeft( rhs );
4316  solveUleft( vec, rhs );
4317  return solveLleftEps( vec, nonz, eps );
4318  }
4319  else
4320  {
4321  solveUleft( vec, rhs );
4322  solveLleftForest( vec, nonz, eps );
4323  return solveLleftEps( vec, nonz, eps );
4324  }
4325 }
4326 
4328  Real* vec1,
4329  int* nonz,
4330  Real* vec2,
4331  Real eps,
4332  Real* rhs1,
4333  Real* rhs2 )
4334 {
4335  METHOD( "CLUFactor::solveLeft2()" );
4336 
4337  if ( !l.updateType ) /* no Forest-Tomlin Updates */
4338  {
4339  solveUpdateLeft2( rhs1, rhs2 );
4340  solveUleft2( vec1, rhs1, vec2, rhs2 );
4341  solveLleft2( vec1, nonz, vec2, eps );
4342  return 0;
4343  }
4344  else
4345  {
4346  solveUleft2( vec1, rhs1, vec2, rhs2 );
4347  solveLleft2forest( vec1, nonz, vec2, eps );
4348  solveLleft2( vec1, nonz, vec2, eps );
4349  return 0;
4350  }
4351 }
4352 
4354  Real* vec, int* vecidx,
4355  Real* rhs, int* rhsidx, int rhsn )
4356 {
4357  METHOD( "CLUFactor::solveUleft()" );
4358  Real x, y;
4359  int i, j, k, n, r, c;
4360  int *rorig, *corig, *cperm;
4361  int *ridx, *rlen, *rbeg, *idx;
4362  Real *rval, *val;
4363 
4364  rorig = row.orig;
4365  corig = col.orig;
4366  cperm = col.perm;
4367 
4368  /* move rhsidx to a heap
4369  */
4370 
4371  for ( i = 0; i < rhsn; )
4372  enQueueMin( rhsidx, &i, cperm[rhsidx[i]] );
4373 
4374  ridx = u.row.idx;
4375 
4376  rval = u.row.val;
4377 
4378  rlen = u.row.len;
4379 
4380  rbeg = u.row.start;
4381 
4382  n = 0;
4383 
4384  while ( rhsn > 0 )
4385  {
4386  i = deQueueMin( rhsidx, &rhsn );
4387  assert( i >= 0 && i < thedim );
4388  c = corig[i];
4389  assert( c >= 0 && c < thedim );
4390  x = rhs[c];
4391  rhs[c] = 0;
4392 
4393  if ( isNotZero( x, eps ) )
4394  {
4395  r = rorig[i];
4396  assert( r >= 0 && r < thedim );
4397  vecidx[n++] = r;
4398  x *= diag[r];
4399  vec[r] = x;
4400  k = rbeg[r];
4401  assert( k >= 0 && k < u.row.size );
4402  idx = &ridx[k];
4403  val = &rval[k];
4404 
4405  for ( int m = rlen[r]; m; --m )
4406  {
4407  j = *idx++;
4408  assert( j >= 0 && j < thedim );
4409  y = rhs[j];
4410 
4411  if ( y == 0 )
4412  {
4413  y = -x * ( *val++ );
4414 
4415  if ( isNotZero( y, eps ) )
4416  {
4417  rhs[j] = y;
4418  enQueueMin( rhsidx, &rhsn, cperm[j] );
4419  }
4420  }
4421  else
4422  {
4423  y -= x * ( *val++ );
4424  rhs[j] = ( y != 0 ) ? y : MARKER;
4425  }
4426  }
4427  }
4428  }
4429 
4430  return n;
4431 }
4432 
4433 
4435  Real* rhs, int* rhsidx, int rhsn )
4436 {
4437  METHOD( "CLUFactor::solveUleftNoNZ()" );
4438  Real x, y;
4439  int i, j, k, r, c;
4440  int *rorig, *corig, *cperm;
4441  int *ridx, *rlen, *rbeg, *idx;
4442  Real *rval, *val;
4443 
4444  rorig = row.orig;
4445  corig = col.orig;
4446  cperm = col.perm;
4447 
4448  /* move rhsidx to a heap
4449  */
4450 
4451  for ( i = 0; i < rhsn; )
4452  enQueueMin( rhsidx, &i, cperm[rhsidx[i]] );
4453 
4454  ridx = u.row.idx;
4455 
4456  rval = u.row.val;
4457 
4458  rlen = u.row.len;
4459 
4460  rbeg = u.row.start;
4461 
4462  while ( rhsn > 0 )
4463  {
4464  i = deQueueMin( rhsidx, &rhsn );
4465  assert( i >= 0 && i < thedim );
4466  c = corig[i];
4467  assert( c >= 0 && c < thedim );
4468  x = rhs[c];
4469  rhs[c] = 0;
4470 
4471  if ( isNotZero( x, eps ) )
4472  {
4473  r = rorig[i];
4474  assert( r >= 0 && r < thedim );
4475  x *= diag[r];
4476  vec[r] = x;
4477  k = rbeg[r];
4478  assert( k >= 0 && k < u.row.size );
4479  idx = &ridx[k];
4480  val = &rval[k];
4481 
4482  for ( int m = rlen[r]; m; --m )
4483  {
4484  j = *idx++;
4485  assert( j >= 0 && j < thedim );
4486  y = rhs[j];
4487 
4488  if ( y == 0 )
4489  {
4490  y = -x * ( *val++ );
4491 
4492  if ( isNotZero( y, eps ) )
4493  {
4494  rhs[j] = y;
4495  enQueueMin( rhsidx, &rhsn, cperm[j] );
4496  }
4497  }
4498  else
4499  {
4500  y -= x * ( *val++ );
4501  rhs[j] = ( y != 0 ) ? y : MARKER;
4502  }
4503  }
4504  }
4505  }
4506 }
4507 
4508 
4509 int CLUFactor::solveLleftForest( Real eps, Real* vec, int* nonz, int n )
4510 {
4511  METHOD( "CLUFactor::solveLleftForest()" );
4512  int i, j, k, end;
4513  Real x, y;
4514  Real *val, *lval;
4515  int *idx, *lidx, *lrow, *lbeg;
4516 
4517  lval = l.val;
4518  lidx = l.idx;
4519  lrow = l.row;
4520  lbeg = l.start;
4521  end = l.firstUpdate;
4522 
4523  for ( i = l.firstUnused - 1; i >= end; --i )
4524  {
4525  assert( i >= 0 && i < l.size );
4526 
4527  if (( x = vec[lrow[i]] ) != 0.0 )
4528  {
4529  k = lbeg[i];
4530  assert( k >= 0 && k < l.size );
4531  val = &lval[k];
4532  idx = &lidx[k];
4533 
4534  for ( j = lbeg[i + 1]; j > k; --j )
4535  {
4536  int m = *idx++;
4537  assert( m >= 0 && m < thedim );
4538  y = vec[m];
4539 
4540  if ( y == 0 )
4541  {
4542  y = -x * ( *val++ );
4543 
4544  if ( isNotZero( y, eps ) )
4545  {
4546  vec[m] = y;
4547  nonz[n++] = m;
4548  }
4549  }
4550  else
4551  {
4552  y -= x * ( *val++ );
4553  vec[m] = ( y != 0 ) ? y : MARKER;
4554  }
4555  }
4556  }
4557  }
4558 
4559  return n;
4560 }
4561 
4562 
4564 {
4565  METHOD( "CLUFactor::solveLleftForestNoNZ()" );
4566  int i, j, k, end;
4567  Real x;
4568  Real *val, *lval;
4569  int *idx, *lidx, *lrow, *lbeg;
4570 
4571  lval = l.val;
4572  lidx = l.idx;
4573  lrow = l.row;
4574  lbeg = l.start;
4575  end = l.firstUpdate;
4576 
4577  for ( i = l.firstUnused - 1; i >= end; --i )
4578  {
4579  if (( x = vec[lrow[i]] ) != 0.0 )
4580  {
4581  assert( i >= 0 && i < l.size );
4582  k = lbeg[i];
4583  assert( k >= 0 && k < l.size );
4584  val = &lval[k];
4585  idx = &lidx[k];
4586 
4587  for ( j = lbeg[i + 1]; j > k; --j )
4588  {
4589  assert( *idx >= 0 && *idx < thedim );
4590  vec[*idx++] -= x * ( *val++ );
4591  }
4592  }
4593  }
4594 }
4595 
4596 
4597 int CLUFactor::solveLleft( Real eps, Real* vec, int* nonz, int rn )
4598 {
4599  METHOD( "CLUFactor::solveLleft()" );
4600  int i, j, k, n;
4601  int r;
4602  Real x, y;
4603  Real *rval, *val;
4604  int *ridx, *idx;
4605  int *rbeg;
4606  int *rorig, *rperm;
4607  int *last;
4608 
4609  ridx = l.ridx;
4610  rval = l.rval;
4611  rbeg = l.rbeg;
4612  rorig = l.rorig;
4613  rperm = l.rperm;
4614  n = 0;
4615 
4616  i = l.firstUpdate - 1;
4617 #ifndef WITH_L_ROWS
4618 #pragma warn "Not yet implemented, define WITH_L_ROWS"
4619  Real* lval = l.val;
4620  int* lidx = l.idx;
4621  int* lrow = l.row;
4622  int* lbeg = l.start;
4623 
4624  for ( ; i >= 0; --i )
4625  {
4626  k = lbeg[i];
4627  val = &lval[k];
4628  idx = &lidx[k];
4629  x = 0;
4630 
4631  for ( j = lbeg[i + 1]; j > k; --j )
4632  x += vec[*idx++] * ( *val++ );
4633 
4634  vec[lrow[i]] -= x;
4635  }
4636 
4637 #else
4638  /* move rhsidx to a heap
4639  */
4640  for ( i = 0; i < rn; )
4641  enQueueMax( nonz, &i, rperm[nonz[i]] );
4642 
4643  last = nonz + thedim;
4644 
4645  while ( rn > 0 )
4646  {
4647  i = deQueueMax( nonz, &rn );
4648  r = rorig[i];
4649  x = vec[r];
4650 
4651  if ( isNotZero( x, eps ) )
4652  {
4653  *( --last ) = r;
4654  n++;
4655  k = rbeg[r];
4656  j = rbeg[r + 1] - k;
4657  val = &rval[k];
4658  idx = &ridx[k];
4659 
4660  while ( j-- > 0 )
4661  {
4662  assert( l.rperm[*idx] < i );
4663  int m = *idx++;
4664  y = vec[m];
4665 
4666  if ( y == 0 )
4667  {
4668  y = -x * *val++;
4669 
4670  if ( isNotZero( y, eps ) )
4671  {
4672  vec[m] = y;
4673  enQueueMax( nonz, &rn, rperm[m] );
4674  }
4675  }
4676  else
4677  {
4678  y -= x * *val++;
4679  vec[m] = ( y != 0 ) ? y : MARKER;
4680  }
4681  }
4682  }
4683  else
4684  vec[r] = 0;
4685  }
4686 
4687  for ( i = 0; i < n; ++i )
4688  *nonz++ = *last++;
4689 
4690 #endif
4691 
4692  return n;
4693 }
4694 
4695 
4697 {
4698  METHOD( "CLUFactor::solveLleftNoNZ()" );
4699  int i, j, k;
4700  int r;
4701  Real x;
4702  Real *rval, *val;
4703  int *ridx, *idx;
4704  int *rbeg;
4705  int* rorig;
4706 
4707  ridx = l.ridx;
4708  rval = l.rval;
4709  rbeg = l.rbeg;
4710  rorig = l.rorig;
4711 
4712 #ifndef WITH_L_ROWS
4713  Real* lval = l.val;
4714  int* lidx = l.idx;
4715  int* lrow = l.row;
4716  int* lbeg = l.start;
4717 
4718  i = l.firstUpdate - 1;
4719  assert( i < thedim );
4720 
4721  for ( ; i >= 0; --i )
4722  {
4723  k = lbeg[i];
4724  assert( k >= 0 && k < l.size );
4725  val = &lval[k];
4726  idx = &lidx[k];
4727  x = 0;
4728 
4729  for ( j = lbeg[i + 1]; j > k; --j )
4730  {
4731  assert( *idx >= 0 && *idx < thedim );
4732  x += vec[*idx++] * ( *val++ );
4733  }
4734 
4735  vec[lrow[i]] -= x;
4736  }
4737 
4738 #else
4739  for ( i = thedim; i--; )
4740  {
4741  r = rorig[i];
4742  x = vec[r];
4743 
4744  if ( x != 0.0 )
4745  {
4746  k = rbeg[r];
4747  j = rbeg[r + 1] - k;
4748  val = &rval[k];
4749  idx = &ridx[k];
4750 
4751  while ( j-- > 0 )
4752  {
4753  assert( l.rperm[*idx] < i );
4754  vec[*idx++] -= x * *val++;
4755  }
4756  }
4757  }
4758 
4759 #endif
4760 }
4761 
4762 int CLUFactor::vSolveLright( Real* vec, int* ridx, int rn, Real eps )
4763 {
4764  METHOD( "CLUFactor::vSolveLright()" );
4765  int i, j, k, n;
4766  int end;
4767  Real x;
4768  Real *lval, *val;
4769  int *lrow, *lidx, *idx;
4770  int *lbeg;
4771 
4772  lval = l.val;
4773  lidx = l.idx;
4774  lrow = l.row;
4775  lbeg = l.start;
4776 
4777  end = l.firstUpdate;
4778 
4779  for ( i = 0; i < end; ++i )
4780  {
4781  x = vec[lrow[i]];
4782 
4783  if ( isNotZero( x, eps ) )
4784  {
4785  k = lbeg[i];
4786  idx = &( lidx[k] );
4787  val = &( lval[k] );
4788 
4789  for ( j = lbeg[i + 1]; j > k; --j )
4790  {
4791  assert( *idx >= 0 && *idx < thedim );
4792  ridx[rn] = n = *idx++;
4793  rn += ( vec[n] == 0 ) ? 1 : 0;
4794  vec[n] -= x * ( *val++ );
4795  vec[n] += ( vec[n] == 0 ) ? MARKER : 0;
4796  }
4797  }
4798  }
4799 
4800  if ( l.updateType ) /* Forest-Tomlin Updates */
4801  {
4802  end = l.firstUnused;
4803 
4804  for ( ; i < end; ++i )
4805  {
4806  x = 0;
4807  k = lbeg[i];
4808  idx = &( lidx[k] );
4809  val = &( lval[k] );
4810 
4811  for ( j = lbeg[i + 1]; j > k; --j )
4812  {
4813  assert( *idx >= 0 && *idx < thedim );
4814  x += vec[*idx++] * ( *val++ );
4815  }
4816 
4817  ridx[rn] = j = lrow[i];
4818 
4819  rn += ( vec[j] == 0 ) ? 1 : 0;
4820  vec[j] -= x;
4821  vec[j] += ( vec[j] == 0 ) ? MARKER : 0;
4822  }
4823  }
4824 
4825  return rn;
4826 }
4827 
4829  Real* vec, int* ridx, int* rnptr, Real eps,
4830  Real* vec2, int* ridx2, int* rn2ptr, Real eps2 )
4831 {
4832  METHOD( "CLUFactor::vSolveLright2()" );
4833  int i, j, k, n;
4834  int end;
4835  Real x, y;
4836  Real x2, y2;
4837  Real *lval, *val;
4838  int *lrow, *lidx, *idx;
4839  int *lbeg;
4840 
4841  int rn = *rnptr;
4842  int rn2 = *rn2ptr;
4843 
4844  lval = l.val;
4845  lidx = l.idx;
4846  lrow = l.row;
4847  lbeg = l.start;
4848 
4849  end = l.firstUpdate;
4850 
4851  for ( i = 0; i < end; ++i )
4852  {
4853  j = lrow[i];
4854  x2 = vec2[j];
4855  x = vec[j];
4856 
4857  if ( isNotZero( x, eps ) )
4858  {
4859  k = lbeg[i];
4860  idx = &( lidx[k] );
4861  val = &( lval[k] );
4862 
4863  if ( isNotZero( x2, eps2 ) )
4864  {
4865  for ( j = lbeg[i + 1]; j > k; --j )
4866  {
4867  assert( *idx >= 0 && *idx < thedim );
4868  ridx[rn] = ridx2[rn2] = n = *idx++;
4869  y = vec[n];
4870  y2 = vec2[n];
4871  rn += ( y == 0 ) ? 1 : 0;
4872  rn2 += ( y2 == 0 ) ? 1 : 0;
4873  y -= x * ( *val );
4874  y2 -= x2 * ( *val++ );
4875  vec[n] = y + ( y == 0 ? MARKER : 0 );
4876  vec2[n] = y2 + ( y2 == 0 ? MARKER : 0 );
4877  }
4878  }
4879  else
4880  {
4881  for ( j = lbeg[i + 1]; j > k; --j )
4882  {
4883  assert( *idx >= 0 && *idx < thedim );
4884  ridx[rn] = n = *idx++;
4885  y = vec[n];
4886  rn += ( y == 0 ) ? 1 : 0;
4887  y -= x * ( *val++ );
4888  vec[n] = y + ( y == 0 ? MARKER : 0 );
4889  }
4890  }
4891  }
4892  else
4893  if ( isNotZero( x2, eps2 ) )
4894  {
4895  k = lbeg[i];
4896  idx = &( lidx[k] );
4897  val = &( lval[k] );
4898 
4899  for ( j = lbeg[i + 1]; j > k; --j )
4900  {
4901  assert( *idx >= 0 && *idx < thedim );
4902  ridx2[rn2] = n = *idx++;
4903  y2 = vec2[n];
4904  rn2 += ( y2 == 0 ) ? 1 : 0;
4905  y2 -= x2 * ( *val++ );
4906  vec2[n] = y2 + ( y2 == 0 ? MARKER : 0 );
4907  }
4908  }
4909  }
4910 
4911  if ( l.updateType ) /* Forest-Tomlin Updates */
4912  {
4913  end = l.firstUnused;
4914 
4915  for ( ; i < end; ++i )
4916  {
4917  x = x2 = 0;
4918  k = lbeg[i];
4919  idx = &( lidx[k] );
4920  val = &( lval[k] );
4921 
4922  for ( j = lbeg[i + 1]; j > k; --j )
4923  {
4924  assert( *idx >= 0 && *idx < thedim );
4925  x += vec[*idx] * ( *val );
4926  x2 += vec2[*idx++] * ( *val++ );
4927  }
4928 
4929  ridx[rn] = ridx2[rn2] = j = lrow[i];
4930 
4931  rn += ( vec[j] == 0 ) ? 1 : 0;
4932  rn2 += ( vec2[j] == 0 ) ? 1 : 0;
4933  vec[j] -= x;
4934  vec2[j] -= x2;
4935  vec[j] += ( vec[j] == 0 ) ? MARKER : 0;
4936  vec2[j] += ( vec2[j] == 0 ) ? MARKER : 0;
4937  }
4938  }
4939 
4940  *rnptr = rn;
4941 
4942  *rn2ptr = rn2;
4943 }
4944 
4946  Real* vec, int* ridx, int* rnptr, Real eps,
4947  Real* vec2, int* ridx2, int* rn2ptr, Real eps2,
4948  Real* vec3, int* ridx3, int* rn3ptr, Real eps3 )
4949 {
4950  METHOD( "CLUFactor::vSolveLright3()" );
4951  int i, j, k, n;
4952  int end;
4953  Real x, y;
4954  Real x2, y2;
4955  Real x3, y3;
4956  Real *lval, *val;
4957  int *lrow, *lidx, *idx;
4958  int *lbeg;
4959 
4960  int rn = *rnptr;
4961  int rn2 = *rn2ptr;
4962  int rn3 = *rn3ptr;
4963 
4964  lval = l.val;
4965  lidx = l.idx;
4966  lrow = l.row;
4967  lbeg = l.start;
4968 
4969  end = l.firstUpdate;
4970 
4971  for ( i = 0; i < end; ++i )
4972  {
4973  j = lrow[i];
4974  x3 = vec3[j];
4975  x2 = vec2[j];
4976  x = vec[j];
4977 
4978  if ( isNotZero( x, eps ) )
4979  {
4980  k = lbeg[i];
4981  idx = &( lidx[k] );
4982  val = &( lval[k] );
4983 
4984  if ( isNotZero( x2, eps2 ) )
4985  {
4986  if ( isNotZero( x3, eps3 ) )
4987  {
4988  // case 1: all three vectors are nonzero at j
4989  for ( j = lbeg[i + 1]; j > k; --j )
4990  {
4991  assert( *idx >= 0 && *idx < thedim );
4992  ridx[rn] = ridx2[rn2] = ridx3[rn3] = n = *idx++;
4993  y = vec[n];
4994  y2 = vec2[n];
4995  y3 = vec3[n];
4996  rn += ( y == 0 ) ? 1 : 0;
4997  rn2 += ( y2 == 0 ) ? 1 : 0;
4998  rn3 += ( y3 == 0 ) ? 1 : 0;
4999  y -= x * ( *val );
5000  y2 -= x2 * ( *val );
5001  y3 -= x3 * ( *val++ );
5002  vec[n] = y + ( y == 0 ? MARKER : 0 );
5003  vec2[n] = y2 + ( y2 == 0 ? MARKER : 0 );
5004  vec3[n] = y3 + ( y3 == 0 ? MARKER : 0 );
5005  }
5006  }
5007  else
5008  {
5009  // case 2: 1 and 2 are nonzero at j
5010  for ( j = lbeg[i + 1]; j > k; --j )
5011  {
5012  assert( *idx >= 0 && *idx < thedim );
5013  ridx[rn] = ridx2[rn2] = n = *idx++;
5014  y = vec[n];
5015  y2 = vec2[n];
5016  rn += ( y == 0 ) ? 1 : 0;
5017  rn2 += ( y2 == 0 ) ? 1 : 0;
5018  y -= x * ( *val );
5019  y2 -= x2 * ( *val++ );
5020  vec[n] = y + ( y == 0 ? MARKER : 0 );
5021  vec2[n] = y2 + ( y2 == 0 ? MARKER : 0 );
5022  }
5023  }
5024  }
5025  else
5026  if ( isNotZero( x3, eps3 ) )
5027  {
5028  // case 3: 1 and 3 are nonzero at j
5029  for ( j = lbeg[i + 1]; j > k; --j )
5030  {
5031  assert( *idx >= 0 && *idx < thedim );
5032  ridx[rn] = ridx3[rn3] = n = *idx++;
5033  y = vec[n];
5034  y3 = vec3[n];
5035  rn += ( y == 0 ) ? 1 : 0;
5036  rn3 += ( y3 == 0 ) ? 1 : 0;
5037  y -= x * ( *val );
5038  y3 -= x3 * ( *val++ );
5039  vec[n] = y + ( y == 0 ? MARKER : 0 );
5040  vec3[n] = y3 + ( y3 == 0 ? MARKER : 0 );
5041  }
5042  }
5043  else
5044  {
5045  // case 4: only 1 is nonzero at j
5046  for ( j = lbeg[i + 1]; j > k; --j )
5047  {
5048  assert( *idx >= 0 && *idx < thedim );
5049  ridx[rn] = n = *idx++;
5050  y = vec[n];
5051  rn += ( y == 0 ) ? 1 : 0;
5052  y -= x * ( *val++ );
5053  vec[n] = y + ( y == 0 ? MARKER : 0 );
5054  }
5055  }
5056  }
5057  else
5058  if ( isNotZero( x2, eps2 ) )
5059  {
5060  k = lbeg[i];
5061  idx = &( lidx[k] );
5062  val = &( lval[k] );
5063 
5064  if ( isNotZero( x3, eps3 ) )
5065  {
5066  // case 5: 2 and 3 are nonzero at j
5067  for ( j = lbeg[i + 1]; j > k; --j )
5068  {
5069  assert( *idx >= 0 && *idx < thedim );
5070  ridx2[rn2] = ridx3[rn3] = n = *idx++;
5071  y2 = vec2[n];
5072  y3 = vec3[n];
5073  rn2 += ( y2 == 0 ) ? 1 : 0;
5074  rn3 += ( y3 == 0 ) ? 1 : 0;
5075  y2 -= x2 * ( *val );
5076  y3 -= x3 * ( *val++ );
5077  vec2[n] = y2 + ( y2 == 0 ? MARKER : 0 );
5078  vec3[n] = y3 + ( y3 == 0 ? MARKER : 0 );
5079  }
5080  }
5081  else
5082  {
5083  // case 6: only 2 is nonzero at j
5084  for ( j = lbeg[i + 1]; j > k; --j )
5085  {
5086  assert( *idx >= 0 && *idx < thedim );
5087  ridx2[rn2] = n = *idx++;
5088  y2 = vec2[n];
5089  rn2 += ( y2 == 0 ) ? 1 : 0;
5090  y2 -= x2 * ( *val++ );
5091  vec2[n] = y2 + ( y2 == 0 ? MARKER : 0 );
5092  }
5093  }
5094  }
5095  else
5096  if ( isNotZero( x3, eps3 ) )
5097  {
5098  // case 7: only 3 is nonzero at j
5099  k = lbeg[i];
5100  idx = &( lidx[k] );
5101  val = &( lval[k] );
5102 
5103  for ( j = lbeg[i + 1]; j > k; --j )
5104  {
5105  assert( *idx >= 0 && *idx < thedim );
5106  ridx3[rn3] = n = *idx++;
5107  y3 = vec3[n];
5108  rn3 += ( y3 == 0 ) ? 1 : 0;
5109  y3 -= x3 * ( *val++ );
5110  vec3[n] = y3 + ( y3 == 0 ? MARKER : 0 );
5111  }
5112  }
5113  }
5114 
5115  if ( l.updateType ) /* Forest-Tomlin Updates */
5116  {
5117  end = l.firstUnused;
5118 
5119  for ( ; i < end; ++i )
5120  {
5121  x = x2 = x3 = 0;
5122  k = lbeg[i];
5123  idx = &( lidx[k] );
5124  val = &( lval[k] );
5125 
5126  for ( j = lbeg[i + 1]; j > k; --j )
5127  {
5128  assert( *idx >= 0 && *idx < thedim );
5129  x += vec[*idx] * ( *val );
5130  x2 += vec2[*idx] * ( *val );
5131  x3 += vec3[*idx++] * ( *val++ );
5132  }
5133 
5134  ridx[rn] = ridx2[rn2] = ridx3[rn3] = j = lrow[i];
5135 
5136  rn += ( vec[j] == 0 ) ? 1 : 0;
5137  rn2 += ( vec2[j] == 0 ) ? 1 : 0;
5138  rn3 += ( vec3[j] == 0 ) ? 1 : 0;
5139  vec[j] -= x;
5140  vec2[j] -= x2;
5141  vec3[j] -= x3;
5142  vec[j] += ( vec[j] == 0 ) ? MARKER : 0;
5143  vec2[j] += ( vec2[j] == 0 ) ? MARKER : 0;
5144  vec3[j] += ( vec3[j] == 0 ) ? MARKER : 0;
5145  }
5146  }
5147 
5148  *rnptr = rn;
5149 
5150  *rn2ptr = rn2;
5151  *rn3ptr = rn3;
5152 }
5153 
5154 int CLUFactor::vSolveUright( Real* vec, int* vidx,
5155  Real* rhs, int* ridx, int rn, Real eps )
5156 {
5157  METHOD( "CLUFactor::vSolveUright()" );
5158  int i, j, k, r, c, n;
5159  int *rorig, *corig;
5160  int *rperm;
5161  int *cidx, *clen, *cbeg;
5162  Real *cval;
5163  Real x, y;
5164 
5165  int *idx;
5166  Real *val;
5167 
5168  rorig = row.orig;
5169  corig = col.orig;
5170  rperm = row.perm;
5171 
5172  cidx = u.col.idx;
5173  cval = u.col.val;
5174  clen = u.col.len;
5175  cbeg = u.col.start;
5176 
5177  n = 0;
5178 
5179  while ( rn > 0 )
5180  {
5181  /* Find nonzero with highest permuted row index and setup i and r
5182  */
5183  i = deQueueMax( ridx, &rn );
5184  assert( i >= 0 && i < thedim );
5185  r = rorig[i];
5186  assert( r >= 0 && r < thedim );
5187 
5188  x = diag[r] * rhs[r];
5189  rhs[r] = 0;
5190 
5191  if ( isNotZero( x, eps ) )
5192  {
5193  c = corig[i];
5194  assert( c >= 0 && c < thedim );
5195  vidx[n++] = c;
5196  vec[c] = x;
5197  val = &cval[cbeg[c]];
5198  idx = &cidx[cbeg[c]];
5199  j = clen[c];
5200 
5201  while ( j-- > 0 )
5202  {
5203  assert( *idx >= 0 && *idx < thedim );
5204  k = *idx++;
5205  assert( k >= 0 && k < thedim );
5206  y = rhs[k];
5207 
5208  if ( y == 0 )
5209  {
5210  y = -x * ( *val++ );
5211 
5212  if ( isNotZero( y, eps ) )
5213  {
5214  rhs[k] = y;
5215  enQueueMax( ridx, &rn, rperm[k] );
5216  }
5217  }
5218  else
5219  {
5220  y -= x * ( *val++ );
5221  y += ( y == 0 ) ? MARKER : 0;
5222  rhs[k] = y;
5223  }
5224  }
5225 
5226  if ( rn > i*verySparseFactor4right )
5227  { /* continue with dense case */
5228  for ( i = *ridx; i >= 0; --i )
5229  {
5230  r = rorig[i];
5231  assert( r >= 0 && r < thedim );
5232  x = diag[r] * rhs[r];
5233  rhs[r] = 0;
5234 
5235  if ( isNotZero( x, eps ) )
5236  {
5237  c = corig[i];
5238  assert( c >= 0 && c < thedim );
5239  vidx[n++] = c;
5240  vec[c] = x;
5241  val = &cval[cbeg[c]];
5242  idx = &cidx[cbeg[c]];
5243  j = clen[c];
5244 
5245  while ( j-- > 0 )
5246  {
5247  assert( *idx >= 0 && *idx < thedim );
5248  rhs[*idx++] -= x * ( *val++ );
5249  }
5250  }
5251  }
5252 
5253  break;
5254  }
5255  }
5256  }
5257 
5258  return n;
5259 }
5260 
5261 
5263  Real* rhs, int* ridx, int rn, Real eps )
5264 {
5265  METHOD( "CLUFactor::vSolveUrightNoNZ()" );
5266  int i, j, k, r, c;
5267  int *rorig, *corig;
5268  int *rperm;
5269  int *cidx, *clen, *cbeg;
5270  Real *cval;
5271  Real x, y;
5272 
5273  int *idx;
5274  Real *val;
5275 
5276  rorig = row.orig;
5277  corig = col.orig;
5278  rperm = row.perm;
5279 
5280  cidx = u.col.idx;
5281  cval = u.col.val;
5282  clen = u.col.len;
5283  cbeg = u.col.start;
5284 
5285  while ( rn > 0 )
5286  {
5287  if ( rn > *ridx * verySparseFactor4right )
5288  { /* continue with dense case */
5289  for ( i = *ridx; i >= 0; --i )
5290  {
5291  assert( i >= 0 && i < thedim );
5292  r = rorig[i];
5293  assert( r >= 0 && r < thedim );
5294  x = diag[r] * rhs[r];
5295  rhs[r] = 0;
5296 
5297  if ( isNotZero( x, eps ) )
5298  {
5299  c = corig[i];
5300  vec[c] = x;
5301  val = &cval[cbeg[c]];
5302  idx = &cidx[cbeg[c]];
5303  j = clen[c];
5304 
5305  while ( j-- > 0 )
5306  {
5307  assert( *idx >= 0 && *idx < thedim );
5308  rhs[*idx++] -= x * ( *val++ );
5309  }
5310  }
5311  }
5312 
5313  break;
5314  }
5315 
5316  /* Find nonzero with highest permuted row index and setup i and r
5317  */
5318  i = deQueueMax( ridx, &rn );
5319 
5320  assert( i >= 0 && i < thedim );
5321 
5322  r = rorig[i];
5323 
5324  assert( r >= 0 && r < thedim );
5325 
5326  x = diag[r] * rhs[r];
5327 
5328  rhs[r] = 0;
5329 
5330  if ( isNotZero( x, eps ) )
5331  {
5332  c = corig[i];
5333  vec[c] = x;
5334  val = &cval[cbeg[c]];
5335  idx = &cidx[cbeg[c]];
5336  j = clen[c];
5337 
5338  while ( j-- > 0 )
5339  {
5340  k = *idx++;
5341  assert( k >= 0 && k < thedim );
5342  y = rhs[k];
5343 
5344  if ( y == 0 )
5345  {
5346  y = -x * ( *val++ );
5347 
5348  if ( isNotZero( y, eps ) )
5349  {
5350  rhs[k] = y;
5351  enQueueMax( ridx, &rn, rperm[k] );
5352  }
5353  }
5354  else
5355  {
5356  y -= x * ( *val++ );
5357  y += ( y == 0 ) ? MARKER : 0;
5358  rhs[k] = y;
5359  }
5360  }
5361  }
5362  }
5363 }
5364 
5365 
5367  Real* vec, int* vidx, Real* rhs, int* ridx, int rn, Real eps,
5368  Real* vec2, Real* rhs2, int* ridx2, int rn2, Real eps2 )
5369 {
5370  METHOD( "CLUFactor::vSolveUright2()" );
5371  int i, j, k, r, c, n;
5372  int *rorig, *corig;
5373  int *rperm;
5374  int *cidx, *clen, *cbeg;
5375  Real *cval;
5376  Real x, y;
5377  Real x2, y2;
5378 
5379  int *idx;
5380  Real *val;
5381 
5382  rorig = row.orig;
5383  corig = col.orig;
5384  rperm = row.perm;
5385 
5386  cidx = u.col.idx;
5387  cval = u.col.val;
5388  clen = u.col.len;
5389  cbeg = u.col.start;
5390 
5391  n = 0;
5392 
5393  while ( rn + rn2 > 0 )
5394  {
5395  /* Find nonzero with highest permuted row index and setup i and r
5396  */
5397  if ( rn <= 0 )
5398  i = deQueueMax( ridx2, &rn2 );
5399  else
5400  if ( rn2 <= 0 )
5401  i = deQueueMax( ridx, &rn );
5402  else
5403  if ( *ridx2 > *ridx )
5404  i = deQueueMax( ridx2, &rn2 );
5405  else
5406  if ( *ridx2 < *ridx )
5407  i = deQueueMax( ridx, &rn );
5408  else
5409  {
5410  i = deQueueMax( ridx, &rn );
5411  i = deQueueMax( ridx2, &rn2 );
5412  }
5413 
5414  assert( i >= 0 && i < thedim );
5415 
5416  r = rorig[i];
5417  assert( r >= 0 && r < thedim );
5418 
5419  x = diag[r] * rhs[r];
5420  x2 = diag[r] * rhs2[r];
5421  rhs[r] = 0;
5422  rhs2[r] = 0;
5423 
5424  if ( isNotZero( x, eps ) )
5425  {
5426  c = corig[i];
5427  vidx[n++] = c;
5428  vec[c] = x;
5429  vec2[c] = x2;
5430  val = &cval[cbeg[c]];
5431  idx = &cidx[cbeg[c]];
5432  j = clen[c];
5433 
5434  if ( isNotZero( x2, eps2 ) )
5435  {
5436  while ( j-- > 0 )
5437  {
5438  k = *idx++;
5439  assert( k >= 0 && k < thedim );
5440  y2 = rhs2[k];
5441 
5442  if ( y2 == 0 )
5443  {
5444  y2 = -x2 * ( *val );
5445 
5446  if ( isNotZero( y2, eps2 ) )
5447  {
5448  rhs2[k] = y2;
5449  enQueueMax( ridx2, &rn2, rperm[k] );
5450  }
5451  }
5452  else
5453  {
5454  y2 -= x2 * ( *val );
5455  rhs2[k] = ( y2 != 0 ) ? y2 : MARKER;
5456  }
5457 
5458  y = rhs[k];
5459 
5460  if ( y == 0 )
5461  {
5462  y = -x * ( *val++ );
5463 
5464  if ( isNotZero( y, eps ) )
5465  {
5466  rhs[k] = y;
5467  enQueueMax( ridx, &rn, rperm[k] );
5468  }
5469  }
5470  else
5471  {
5472  y -= x * ( *val++ );
5473  y += ( y == 0 ) ? MARKER : 0;
5474  rhs[k] = y;
5475  }
5476  }
5477  }
5478  else
5479  {
5480  while ( j-- > 0 )
5481  {
5482  k = *idx++;
5483  assert( k >= 0 && k < thedim );
5484  y = rhs[k];
5485 
5486  if ( y == 0 )
5487  {
5488  y = -x * ( *val++ );
5489 
5490  if ( isNotZero( y, eps ) )
5491  {
5492  rhs[k] = y;
5493  enQueueMax( ridx, &rn, rperm[k] );
5494  }
5495  }
5496  else
5497  {
5498  y -= x * ( *val++ );
5499  y += ( y == 0 ) ? MARKER : 0;
5500  rhs[k] = y;
5501  }
5502  }
5503  }
5504  }
5505  else
5506  if ( isNotZero( x2, eps2 ) )
5507  {
5508  c = corig[i];
5509  assert( c >= 0 && c < thedim );
5510  vec2[c] = x2;
5511  val = &cval[cbeg[c]];
5512  idx = &cidx[cbeg[c]];
5513  j = clen[c];
5514 
5515  while ( j-- > 0 )
5516  {
5517  k = *idx++;
5518  assert( k >= 0 && k < thedim );
5519  y2 = rhs2[k];
5520 
5521  if ( y2 == 0 )
5522  {
5523  y2 = -x2 * ( *val++ );
5524 
5525  if ( isNotZero( y2, eps2 ) )
5526  {
5527  rhs2[k] = y2;
5528  enQueueMax( ridx2, &rn2, rperm[k] );
5529  }
5530  }
5531  else
5532  {
5533  y2 -= x2 * ( *val++ );
5534  rhs2[k] = ( y2 != 0 ) ? y2 : MARKER;
5535  }
5536  }
5537  }
5538 
5539  if ( rn + rn2 > i*verySparseFactor4right )
5540  { /* continue with dense case */
5541  if ( *ridx > *ridx2 )
5542  i = *ridx;
5543  else
5544  i = *ridx2;
5545 
5546  for ( ; i >= 0; --i )
5547  {
5548  assert( i < thedim );
5549  r = rorig[i];
5550  assert( r >= 0 && r < thedim );
5551  x = diag[r] * rhs[r];
5552  x2 = diag[r] * rhs2[r];
5553  rhs[r] = 0;
5554  rhs2[r] = 0;
5555 
5556  if ( isNotZero( x2, eps2 ) )
5557  {
5558  c = corig[i];
5559  assert( c >= 0 && c < thedim );
5560  vec2[c] = x2;
5561  val = &cval[cbeg[c]];
5562  idx = &cidx[cbeg[c]];
5563  j = clen[c];
5564 
5565  if ( isNotZero( x, eps ) )
5566  {
5567  vidx[n++] = c;
5568  vec[c] = x;
5569 
5570  while ( j-- > 0 )
5571  {
5572  assert( *idx >= 0 && *idx < thedim );
5573  rhs[*idx] -= x * ( *val );
5574  rhs2[*idx++] -= x2 * ( *val++ );
5575  }
5576  }
5577  else
5578  {
5579  while ( j-- > 0 )
5580  {
5581  assert( *idx >= 0 && *idx < thedim );
5582  rhs2[*idx++] -= x2 * ( *val++ );
5583  }
5584  }
5585  }
5586  else
5587  if ( isNotZero( x, eps ) )
5588  {
5589  c = corig[i];
5590  assert( c >= 0 && c < thedim );
5591  vidx[n++] = c;
5592  vec[c] = x;
5593  val = &cval[cbeg[c]];
5594  idx = &cidx[cbeg[c]];
5595  j = clen[c];
5596 
5597  while ( j-- > 0 )
5598  {
5599  assert( *idx >= 0 && *idx < thedim );
5600  rhs[*idx++] -= x * ( *val++ );
5601  }
5602  }
5603  }
5604 
5605  break;
5606  }
5607  }
5608 
5609  return n;
5610 }
5611 
5612 int CLUFactor::vSolveUpdateRight( Real* vec, int* ridx, int n, Real eps )
5613 {
5614  METHOD( "CLUFactor::vSolveUpdateRight()" );
5615  int i, j, k;
5616  int end;
5617  Real x, y;
5618  Real *lval, *val;
5619  int *lrow, *lidx, *idx;
5620  int *lbeg;
5621 
5622  assert( !l.updateType ); /* no Forest-Tomlin Updates */
5623 
5624  lval = l.val;
5625  lidx = l.idx;
5626  lrow = l.row;
5627  lbeg = l.start;
5628  end = l.firstUnused;
5629 
5630  for ( i = l.firstUpdate; i < end; ++i )
5631  {
5632  assert( i >= 0 && i < thedim );
5633  x = vec[lrow[i]];
5634 
5635  if ( isNotZero( x, eps ) )
5636  {
5637  k = lbeg[i];
5638  assert( k >= 0 && k < l.size );
5639  idx = &( lidx[k] );
5640  val = &( lval[k] );
5641 
5642  for ( j = lbeg[i + 1]; j > k; --j )
5643  {
5644  int m = ridx[n] = *idx++;
5645  assert( m >= 0 && m < thedim );
5646  y = vec[m];
5647  n += ( y == 0 ) ? 1 : 0;
5648  y = y - x * ( *val++ );
5649  vec[m] = ( y != 0 ) ? y : MARKER;
5650  }
5651  }
5652  }
5653 
5654  return n;
5655 }
5656 
5658 {
5659  METHOD( "CLUFactor::vSolveUpdateRightNoNZ()" );
5660  int i, j, k;
5661  int end;
5662  Real x;
5663  Real *lval, *val;
5664  int *lrow, *lidx, *idx;
5665  int *lbeg;
5666 
5667  assert( !l.updateType ); /* no Forest-Tomlin Updates */
5668 
5669  lval = l.val;
5670  lidx = l.idx;
5671  lrow = l.row;
5672  lbeg = l.start;
5673  end = l.firstUnused;
5674 
5675  for ( i = l.firstUpdate; i < end; ++i )
5676  {
5677  assert( i >= 0 && i < thedim );
5678 
5679  if (( x = vec[lrow[i]] ) != 0.0 )
5680  {
5681  k = lbeg[i];
5682  assert( k >= 0 && k < l.size );
5683  idx = &( lidx[k] );
5684  val = &( lval[k] );
5685 
5686  for ( j = lbeg[i + 1]; j > k; --j )
5687  {
5688  assert( *idx >= 0 && *idx < thedim );
5689  vec[*idx++] -= x * ( *val++ );
5690  }
5691  }
5692  }
5693 }
5694 
5695 
5697  Real* vec, int* idx, /* result */
5698  Real* rhs, int* ridx, int rn, /* rhs */
5699  Real* forest, int* forestNum, int* forestIdx )
5700 {
5701  METHOD( "CLUFactor::vSolveRight4update()" );
5702  rn = vSolveLright( rhs, ridx, rn, eps );
5703 
5704  /* turn index list into a heap
5705  */
5706 
5707  if ( forest )
5708  {
5709  Real x;
5710  int i, j, k;
5711  int* rperm;
5712  int* it = forestIdx;
5713 
5714  rperm = row.perm;
5715 
5716  for ( i = j = 0; i < rn; ++i )
5717  {
5718  k = ridx[i];
5719  assert( k >= 0 && k < thedim );
5720  x = rhs[k];
5721 
5722  if ( isNotZero( x, eps ) )
5723  {
5724  enQueueMax( ridx, &j, rperm[*it++ = k] );
5725  forest[k] = x;
5726  }
5727  else
5728  rhs[k] = 0;
5729  }
5730 
5731  *forestNum = rn = j;
5732  }
5733  else
5734  {
5735  Real x;
5736  int i, j, k;
5737  int* rperm;
5738 
5739  rperm = row.perm;
5740 
5741  for ( i = j = 0; i < rn; ++i )
5742  {
5743  k = ridx[i];
5744  assert( k >= 0 && k < thedim );
5745  x = rhs[k];
5746 
5747  if ( isNotZero( x, eps ) )
5748  enQueueMax( ridx, &j, rperm[k] );
5749  else
5750  rhs[k] = 0;
5751  }
5752 
5753  rn = j;
5754  }
5755 
5756  rn = vSolveUright( vec, idx, rhs, ridx, rn, eps );
5757 
5758  if ( !l.updateType ) /* no Forest-Tomlin Updates */
5759  rn = vSolveUpdateRight( vec, idx, rn, eps );
5760 
5761  return rn;
5762 }
5763 
5765  Real* vec, int* idx, /* result1 */
5766  Real* rhs, int* ridx, int rn, /* rhs1 */
5767  Real* vec2, Real eps2, /* result2 */
5768  Real* rhs2, int* ridx2, int rn2, /* rhs2 */
5769  Real* forest, int* forestNum, int* forestIdx )
5770 {
5771  METHOD( "CLUFactor::vSolveRight4update2()" );
5772  /*
5773  * rn = vSolveLright(rhs, ridx, rn, eps);
5774  * rn2 = vSolveLright(rhs2, ridx2, rn2, eps2);
5775  */
5776  vSolveLright2( rhs, ridx, &rn, eps, rhs2, ridx2, &rn2, eps2 );
5777 
5778  /* turn index list into a heap
5779  */
5780 
5781  if ( forest )
5782  {
5783  Real x;
5784  int i, j, k;
5785  int* rperm;
5786  int* it = forestIdx;
5787 
5788  rperm = row.perm;
5789 
5790  for ( i = j = 0; i < rn; ++i )
5791  {
5792  k = ridx[i];
5793  assert( k >= 0 && k < thedim );
5794  x = rhs[k];
5795 
5796  if ( isNotZero( x, eps ) )
5797  {
5798  enQueueMax( ridx, &j, rperm[*it++ = k] );
5799  forest[k] = x;
5800  }
5801  else
5802  rhs[k] = 0;
5803  }
5804 
5805  *forestNum = rn = j;
5806  }
5807  else
5808  {
5809  Real x;
5810  int i, j, k;
5811  int* rperm;
5812 
5813  rperm = row.perm;
5814 
5815  for ( i = j = 0; i < rn; ++i )
5816  {
5817  k = ridx[i];
5818  assert( k >= 0 && k < thedim );
5819  x = rhs[k];
5820 
5821  if ( isNotZero( x, eps ) )
5822  enQueueMax( ridx, &j, rperm[k] );
5823  else
5824  rhs[k] = 0;
5825  }
5826 
5827  rn = j;
5828  }
5829 
5830  if ( rn2 > thedim*verySparseFactor4right )
5831  {
5832  ridx2[0] = thedim - 1;
5833  /* ridx2[1] = thedim - 2; */
5834  }
5835  else
5836  {
5837  Real x;
5838  /* Real maxabs; */
5839  int i, j, k;
5840  int* rperm;
5841 
5842  /* maxabs = 1; */
5843  rperm = row.perm;
5844 
5845  for ( i = j = 0; i < rn2; ++i )
5846  {
5847  k = ridx2[i];
5848  assert( k >= 0 && k < thedim );
5849  x = rhs2[k];
5850 
5851  if ( x < -eps2 )
5852  {
5853  /* maxabs = (maxabs < -x) ? -x : maxabs; */
5854  enQueueMax( ridx2, &j, rperm[k] );
5855  }
5856  else
5857  if ( x > eps2 )
5858  {
5859  /* maxabs = (maxabs < x) ? x : maxabs; */
5860  enQueueMax( ridx2, &j, rperm[k] );
5861  }
5862  else
5863  rhs2[k] = 0;
5864  }
5865 
5866  rn2 = j;
5867 
5868  /* eps2 = maxabs * eps2; */
5869  }
5870 
5871  rn = vSolveUright( vec, idx, rhs, ridx, rn, eps );
5872 
5873  vSolveUrightNoNZ( vec2, rhs2, ridx2, rn2, eps2 );
5874 
5875  /*
5876  * rn = vSolveUright2(vec, idx, rhs, ridx, rn, eps, vec2, rhs2, ridx2, rn2, eps2);
5877  */
5878 
5879  if ( !l.updateType ) /* no Forest-Tomlin Updates */
5880  {
5881  rn = vSolveUpdateRight( vec, idx, rn, eps );
5882  vSolveUpdateRightNoNZ( vec2, eps2 );
5883  }
5884 
5885  return rn;
5886 }
5887 
5889  Real* vec, int* idx, /* result1 */
5890  Real* rhs, int* ridx, int rn, /* rhs1 */
5891  Real* vec2, Real eps2, /* result2 */
5892  Real* rhs2, int* ridx2, int rn2, /* rhs2 */
5893  Real* vec3, Real eps3, /* result3 */
5894  Real* rhs3, int* ridx3, int rn3, /* rhs3 */
5895  Real* forest, int* forestNum, int* forestIdx )
5896 {
5897  METHOD( "CLUFactor::vSolveRight4update3()" );
5898 
5899  vSolveLright3( rhs, ridx, &rn, eps, rhs2, ridx2, &rn2, eps2, rhs3, ridx3, &rn3, eps3 );
5900  assert( rn >= 0 && rn <= thedim );
5901  assert( rn2 >= 0 && rn2 <= thedim );
5902  assert( rn3 >= 0 && rn3 <= thedim );
5903 
5904  /* turn index list into a heap
5905  */
5906 
5907  if ( forest )
5908  {
5909  Real x;
5910  int i, j, k;
5911  int* rperm;
5912  int* it = forestIdx;
5913 
5914  rperm = row.perm;
5915 
5916  for ( i = j = 0; i < rn; ++i )
5917  {
5918  k = ridx[i];
5919  assert( k >= 0 && k < thedim );
5920  x = rhs[k];
5921 
5922  if ( isNotZero( x, eps ) )
5923  {
5924  enQueueMax( ridx, &j, rperm[*it++ = k] );
5925  forest[k] = x;
5926  }
5927  else
5928  rhs[k] = 0;
5929  }
5930 
5931  *forestNum = rn = j;
5932  }
5933  else
5934  {
5935  Real x;
5936  int i, j, k;
5937  int* rperm;
5938 
5939  rperm = row.perm;
5940 
5941  for ( i = j = 0; i < rn; ++i )
5942  {
5943  k = ridx[i];
5944  assert( k >= 0 && k < thedim );
5945  x = rhs[k];
5946 
5947  if ( isNotZero( x, eps ) )
5948  enQueueMax( ridx, &j, rperm[k] );
5949  else
5950  rhs[k] = 0;
5951  }
5952 
5953  rn = j;
5954  }
5955 
5956  if ( rn2 > thedim*verySparseFactor4right )
5957  {
5958  ridx2[0] = thedim - 1;
5959  }
5960  else
5961  {
5962  Real x;
5963  int i, j, k;
5964  int* rperm;
5965 
5966  rperm = row.perm;
5967 
5968  for ( i = j = 0; i < rn2; ++i )
5969  {
5970  k = ridx2[i];
5971  assert( k >= 0 && k < thedim );
5972  x = rhs2[k];
5973 
5974  if ( x < -eps2 )
5975  {
5976  enQueueMax( ridx2, &j, rperm[k] );
5977  }
5978  else
5979  if ( x > eps2 )
5980  {
5981  enQueueMax( ridx2, &j, rperm[k] );
5982  }
5983  else
5984  rhs2[k] = 0;
5985  }
5986 
5987  rn2 = j;
5988  }
5989 
5990  if ( rn3 > thedim*verySparseFactor4right )
5991  {
5992  ridx3[0] = thedim - 1;
5993  }
5994  else
5995  {
5996  Real x;
5997  int i, j, k;
5998  int* rperm;
5999 
6000  rperm = row.perm;
6001 
6002  for ( i = j = 0; i < rn3; ++i )
6003  {
6004  k = ridx3[i];
6005  assert( k >= 0 && k < thedim );
6006  x = rhs3[k];
6007 
6008  if ( x < -eps3 )
6009  {
6010  enQueueMax( ridx3, &j, rperm[k] );
6011  }
6012  else
6013  if ( x > eps3 )
6014  {
6015  enQueueMax( ridx3, &j, rperm[k] );
6016  }
6017  else
6018  rhs3[k] = 0;
6019  }
6020 
6021  rn3 = j;
6022  }
6023 
6024  rn = vSolveUright( vec, idx, rhs, ridx, rn, eps );
6025 
6026  vSolveUrightNoNZ( vec2, rhs2, ridx2, rn2, eps2 );
6027  vSolveUrightNoNZ( vec3, rhs3, ridx3, rn3, eps3 );
6028 
6029  if ( !l.updateType ) /* no Forest-Tomlin Updates */
6030  {
6031  rn = vSolveUpdateRight( vec, idx, rn, eps );
6032  vSolveUpdateRightNoNZ( vec2, eps2 );
6033  vSolveUpdateRightNoNZ( vec3, eps3 );
6034  }
6035 
6036  return rn;
6037 }
6038 
6040  Real* vec2, Real eps2, /* result2 */
6041  Real* rhs2, int* ridx2, int rn2 ) /* rhs2 */
6042 {
6043  METHOD( "CLUFactor::vSolveRightNoNZ()" );
6044  rn2 = vSolveLright( rhs2, ridx2, rn2, eps2 );
6045  assert( rn2 >= 0 && rn2 <= thedim );
6046 
6047  if ( rn2 > thedim*verySparseFactor4right )
6048  {
6049  *ridx2 = thedim - 1;
6050  }
6051  else
6052  {
6053  Real x;
6054  /* Real maxabs; */
6055  int i, j, k;
6056  int* rperm;
6057 
6058  /* maxabs = 1; */
6059  rperm = row.perm;
6060 
6061  for ( i = j = 0; i < rn2; ++i )
6062  {
6063  k = ridx2[i];
6064  assert( k >= 0 && k < thedim );
6065  x = rhs2[k];
6066 
6067  if ( x < -eps2 )
6068  {
6069  /* maxabs = (maxabs < -x) ? -x : maxabs; */
6070  enQueueMax( ridx2, &j, rperm[k] );
6071  }
6072  else
6073  if ( x > eps2 )
6074  {
6075  /* maxabs = (maxabs < x) ? x : maxabs; */
6076  enQueueMax( ridx2, &j, rperm[k] );
6077  }
6078  else
6079  rhs2[k] = 0;
6080  }
6081 
6082  rn2 = j;
6083 
6084  /* eps2 = maxabs * eps2; */
6085  }
6086 
6087  vSolveUrightNoNZ( vec2, rhs2, ridx2, rn2, eps2 );
6088 
6089  if ( !l.updateType ) /* no Forest-Tomlin Updates */
6090  vSolveUpdateRightNoNZ( vec2, eps2 );
6091 }
6092 
6094  Real* vec, int* idx, /* result */
6095  Real* rhs, int* ridx, int rn ) /* rhs */
6096 {
6097  METHOD( "CLUFactor::vSolveLeft()" );
6098 
6099  if ( !l.updateType ) /* no Forest-Tomlin Updates */
6100  {
6101  rn = solveUpdateLeft( eps, rhs, ridx, rn );
6102  rn = solveUleft( eps, vec, idx, rhs, ridx, rn );
6103  }
6104  else
6105  {
6106  rn = solveUleft( eps, vec, idx, rhs, ridx, rn );
6107  rn = solveLleftForest( eps, vec, idx, rn );
6108  }
6109 
6110  if ( rn + l.firstUpdate > verySparseFactor4left * thedim )
6111  {
6112  solveLleftNoNZ( vec );
6113  return 0;
6114  }
6115  else
6116  return solveLleft( eps, vec, idx, rn );
6117 }
6118 
6120  Real* vec, int* idx, /* result */
6121  Real* rhs, int* ridx, int rn, /* rhs */
6122  Real* vec2, /* result2 */
6123  Real* rhs2, int* ridx2, int rn2 ) /* rhs2 */
6124 {
6125  METHOD( "CLUFactor::vSolveLeft2()" );
6126 
6127  if ( !l.updateType ) /* no Forest-Tomlin Updates */
6128  {
6129  rn = solveUpdateLeft( eps, rhs, ridx, rn );
6130  rn = solveUleft( eps, vec, idx, rhs, ridx, rn );
6131  rn2 = solveUpdateLeft( eps, rhs2, ridx2, rn2 );
6132  solveUleftNoNZ( eps, vec2, rhs2, ridx2, rn2 );
6133  }
6134  else
6135  {
6136  rn = solveUleft( eps, vec, idx, rhs, ridx, rn );
6137  rn = solveLleftForest( eps, vec, idx, rn );
6138  solveUleftNoNZ( eps, vec2, rhs2, ridx2, rn2 );
6139  solveLleftForestNoNZ( vec2 );
6140  }
6141 
6142  rn = solveLleft( eps, vec, idx, rn );
6143 
6144  solveLleftNoNZ( vec2 );
6145 
6146  return rn;
6147 }
6148 
6150  Real* vec2, /* result2 */
6151  Real* rhs2, int* ridx2, int rn2 ) /* rhs2 */
6152 {
6153  METHOD( "CLUFactor::vSolveLeftNoNZ()" );
6154 
6155  if ( !l.updateType ) /* no Forest-Tomlin Updates */
6156  {
6157  rn2 = solveUpdateLeft( eps, rhs2, ridx2, rn2 );
6158  solveUleftNoNZ( eps, vec2, rhs2, ridx2, rn2 );
6159  }
6160  else
6161  {
6162  solveUleftNoNZ( eps, vec2, rhs2, ridx2, rn2 );
6163  solveLleftForestNoNZ( vec2 );
6164  }
6165 
6166  solveLleftNoNZ( vec2 );
6167 }
6168 } // namespace soplex
6169 
6170 //-----------------------------------------------------------------------------
6171 //Emacs Local Variables:
6172 //Emacs mode:c++
6173 //Emacs c-basic-offset:3
6174 //Emacs tab-width:8
6175 //Emacs indent-tabs-mode:nil
6176 //Emacs End:
6177 //-----------------------------------------------------------------------------