SoPlex Doxygen Documentation
spxbasis.h
Go to the documentation of this file.
1 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
2 /* */
3 /* This file is part of the class library */
4 /* SoPlex --- the Sequential object-oriented simPlex. */
5 /* */
6 /* Copyright (C) 1996-2012 Konrad-Zuse-Zentrum */
7 /* fuer Informationstechnik Berlin */
8 /* */
9 /* SoPlex is distributed under the terms of the ZIB Academic Licence. */
10 /* */
11 /* You should have received a copy of the ZIB Academic License */
12 /* along with SoPlex; see the file COPYING. If not email to soplex@zib.de. */
13 /* */
14 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
15 
16 /**@file spxbasis.h
17  * @brief Simplex basis.
18  */
19 #ifndef _SPXBASIS_H_
20 #define _SPXBASIS_H_
21 
22 #include <assert.h>
23 #include <iostream>
24 #include <iomanip>
25 #include <string>
26 #include <sstream>
27 
28 #include "spxdefines.h"
29 #include "spxlp.h"
30 #include "svector.h"
31 #include "ssvector.h"
32 #include "dataarray.h"
33 #include "slinsolver.h"
34 #include "nameset.h"
35 #include "spxout.h"
36 #include "timer.h"
37 
38 //#define MEASUREUPDATETIME
39 
40 namespace soplex
41 {
42 class SPxSolver;
43 
44 /**@class SPxBasis
45  @brief Simplex basis.
46  @ingroup Algo
47 
48  Consider the linear program as provided from class SPxLP:
49  \f[
50  \begin{array}{rl}
51  \hbox{max} & c^T x \\
52  \hbox{s.t.} & l_r \le Ax \le u_r \\
53  & l_c \le x \le u_c
54  \end{array}
55  \f]
56  where \f$c, l_c, u_c, x \in {\bf R}^n\f$, \f$l_r, u_r \in {\bf R}^m\f$ and
57  \f$A \in {\bf R}^{m \times n}\f$. Solving this LP with the simplex algorithm
58  requires the definition of a \em basis. Such can be defined as a set of
59  column vectors or a set of row vectors building a nonsingular matrix. We
60  will refer to the first case as the \em columnwise \em representation and
61  the latter case will be called the \em rowwise \em representation. In both
62  cases, a \em basis is a set of vectors forming a nonsigular matrix. The
63  dimension of the vectors is refered to as the basis' \em dimension,
64  whereas the number of vectors belonging to the LP is called the basis'
65  \em codimension.
66 
67  Class SPxBasis is designed to represent a generic simplex basis, suitable
68  for both representations. At any time the representation can be changed by
69  calling method setRep().
70 
71  Class SPxBasis provides methods for solving linear systems with the basis
72  matrix. However, SPxBasis does not provide a linear solver by its own.
73  Instead, a SLinSolver object must be #load%ed to a SPxBasis which will
74  be called for solving linear systems.
75 */
76 class SPxBasis
77 {
78 public:
79 
80  /// basis status.
81  /** Each SPxBasis is assigned a status flag, which can take on of the
82  above values.
83  */
84  enum SPxStatus
85  {
86  NO_PROBLEM = -2, ///< No Problem has been loaded to the basis.
87  SINGULAR = -1, ///< Basis is singular.
88  REGULAR = 0, ///< Basis is not known to be dual nor primal feasible.
89  DUAL = 1, ///< Basis is dual feasible.
90  PRIMAL = 2, ///< Basis is primal feasible.
91  OPTIMAL = 3, ///< Basis is optimal, i.e. dual and primal feasible.
92  UNBOUNDED = 4, ///< LP has been proven to be primal unbounded.
93  INFEASIBLE = 5 ///< LP has been proven to be primal infeasible.
94  };
95 
96 
97  /// Basis descriptor.
98  class Desc
99  {
100  public:
101 
102  //------------------------------------
103  //**@name Status */
104  //@{
105  /// Status of a variable.
106  /** A basis is described by assigning a Status to all of the LP
107  variables and covariables. This assignment is maintained by the
108  basis #Desc%riptor.
109 
110  Variables and covariables may have a primal or dual Status. The
111  first type specifies that a variable is set on a primal bound, while
112  the latter type indicates a dual variable to be set on a bound.
113  If a row variable has a primal status, say #P_ON_UPPER, this means
114  that the upper bound of the inequality is set to be tight. Hence,
115  in this case the upper bound must not be infinity.
116 
117  Equivalently, if the status of a variable is dual, say #D_ON_UPPER,
118  it means that the dual variable corresponding to the upper bound
119  inequality of this variable is set to 0.
120 
121  For a column basis, primal #Status%es correspond to nonbasic
122  variables, while dual ones are basic. This is reversed for a row
123  basis. We will now reveal in more detail the significance of
124  variable #Status%es.
125 
126  <b>Primal Variables</b>
127 
128  Consider a range inequality \f$l_r \le a^T x \le u_r\f$ or bounds on
129  a variable \f$l_c \le x_c \le u_c\f$. The following table reveals
130  what is implied if the corresponding variable or covariable is
131  assigned to a primal #Status:
132 
133  \f[
134  \begin{array}{lcl}
135  l_c \le x_c \le u_c & \mbox{Status}(x_i) & l_r \le a^T x \le u_r \\
136  \hline
137  x_c = u_c < \infty & \mbox{P\_ON\_UPPER} & a^T x = u_r < \infty \\
138  x_c = l_c > -\infty & \mbox{P\_ON\_LOWER} & a^T x = l_r > -\infty \\
139  -\infty < l_c = x_c = u_c < \infty
140  & \mbox{P\_FIXED} &
141  -\infty < l_r = a^T x = u_r < \infty \\
142  -\infty = l_i < x_i=0 < u_i = \infty
143  & \mbox{P\_FREE} &
144  -\infty = l_r < a^T x = 0 < u_r = \infty \\
145  \end{array}
146  \f]
147 
148  Note that to determine whether a variable with #Status stat is set to
149  its upper bound, one can compute the test (-stat | -#P_ON_UPPER).
150  This will yield true even if the variable is fixed, i.e., sitting on
151  both bounds at the same time.
152 
153  <b>Dual Variables</b>
154 
155  In principle for implementing the Simplex algorithm it would suffice
156  to use only one dual #Status. However, for performance reasons it
157  is advisable to introduce various dual status types, reflecting
158  the structure of the bounds. Given an upper bound \f$u\f$ and a lower
159  bound \f$l\f$ of a constraint or variable, the following table
160  indicates the setting of the dual Status of this variable.
161 
162  \f[
163  \begin{array}{cl}
164  l \le ... \le u & \mbox{Status} \\
165  \hline
166  -\infty < l \ne u < \infty & \mbox{D\_ON\_BOTH} \\
167  -\infty < l \ne u = \infty & \mbox{D\_ON\_UPPER} \\
168  -\infty = l \ne u < \infty & \mbox{D\_ON\_LOWER} \\
169  -\infty < l = u < \infty & \mbox{D\_FREE} \\
170  -\infty = l \ne u = \infty & \mbox{D\_UNDEFINED} \\
171  \end{array}
172  \f]
173 
174  Note that unbounded primal variables are reflected by an #D_UNDEFINED
175  dual variable, since no dual variables exist for them. To facilitate
176  the assignment of dual #Status%es, class SPxBasis provides methods
177  #dualStatus(), #dualColStatus() and #dualRowStatus)().
178  */
179  enum Status
180  {
181  P_ON_LOWER = -4, ///< primal variable is set to its lower bound
182  P_ON_UPPER = -2, ///< primal variable is set to its upper bound
183  P_FREE = -1, ///< primal variable is left free, but unset
184  P_FIXED = P_ON_UPPER + P_ON_LOWER, ///< primal variable is fixed to both bounds
185  D_FREE = 1, ///< dual variable is left free, but unset
186  D_ON_UPPER = 2, ///< dual variable is set to its upper bound
187  D_ON_LOWER = 4, ///< dual variable is set to its lower bound
188  D_ON_BOTH = D_ON_LOWER + D_ON_UPPER, ///< dual variable has two bounds
189  D_UNDEFINED = 8 ///< primal or dual variable has no status
190  };
191  //@}
192 
193  friend class SPxBasis;
194  friend std::ostream& operator<<(std::ostream& os, const Status& stat);
195 
196 private:
197 
198  //------------------------------------
199  //**@name Data */
200  //@{
201  DataArray < Status > rowstat; ///< status of rows.
202  DataArray < Status > colstat; ///< status of columns.
203  DataArray < Status > * stat; ///< basis' status.
204  DataArray < Status > * costat; ///< cobasis' status.
205  //@}
206 
207 public:
208 
209  //------------------------------------
210  //**@name Access / modification */
211  //@{
212  /// returns number of columns.
213  int nCols() const
214  {
215  return colstat.size();
216  }
217  /// returns number of rows.
218  int nRows() const
219  {
220  return rowstat.size();
221  }
222  /// returns dimension.
223  int dim() const
224  {
225  return stat->size();
226  }
227  /// returns codimension.
228  int coDim() const
229  {
230  return costat->size();
231  }
232  ///
234  {
235  return rowstat[i];
236  }
237  /// returns status of row \p i.
238  Status rowStatus(int i) const
239  {
240  return rowstat[i];
241  }
242  /// returns the array of row \ref soplex::SPxBasis::Desc::Status "Status"es.
243  const Status* rowStatus(void) const
244  {
245  return rowstat.get_const_ptr();
246  }
247  ///
249  {
250  return colstat[i];
251  }
252  /// returns status of column \p i.
253  Status colStatus(int i) const
254  {
255  return colstat[i];
256  }
257  /// returns the array of column \ref soplex::SPxBasis::Desc::Status "Status"es.
258  const Status* colStatus(void) const
259  {
260  return colstat.get_const_ptr();
261  }
262  ///
263  Status& status(int i)
264  {
265  return (*stat)[i];
266  }
267  /// returns status of variable \p i.
268  Status status(int i) const
269  {
270  return (*stat)[i];
271  }
272  /// returns the array of variable \ref soplex::SPxBasis::Desc::Status "Status"es.
273  const Status* status(void) const
274  {
275  return stat->get_const_ptr();
276  }
277  ///
278  Status& coStatus(int i)
279  {
280  return (*costat)[i];
281  }
282  /// returns status of covariable \p i.
283  Status coStatus(int i) const
284  {
285  return (*costat)[i];
286  }
287  /// returns the array of covariable \ref soplex::SPxBasis::Desc::Status "Status"es.
288  const Status* coStatus(void) const
289  {
290  return costat->get_const_ptr();
291  }
292  /// resets dimensions.
293  void reSize(int rowDim, int colDim);
294  //@}
295 
296  //------------------------------------
297  //**@name Debugging */
298  //@{
299  /// Prints out status.
300  void dump() const;
301 
302  /// consistency check.
303  bool isConsistent() const;
304  //@}
305 
306  //------------------------------------
307  //**@name Construction / destruction */
308  //@{
309  /// default constructor
311  : stat(0)
312  , costat(0)
313  {}
314  explicit Desc(const SPxSolver& base);
315 
316  /// copy constructor
317  Desc(const Desc& old);
318  /// assignment operator
319  Desc& operator=(const Desc& rhs);
320  //@}
321  };
322 
323 protected:
324 
325  //------------------------------------
326  //**@name Protected data
327  /**
328  For storing the basis matrix we keep two arrays: Array #theBaseId
329  contains the SPxId%s of the basis vectors, and #matrix the pointers to
330  the vectors themselfes. Method #loadMatrixVecs() serves for loading
331  #matrix according to the SPxId%s stored in #theBaseId. This method must
332  be called whenever the vector pointers may have
333  changed due to manipulations of the LP.
334  */
335  //@{
336  /// the LP
338  /// SPxId%s of basic vectors.
340  /// pointers to the vectors of the basis matrix.
342  /// \c true iff the pointers in \ref soplex::SPxBasis::matrix "matrix" are set up correctly.
344 
345  /* @brief LU factorization of basis matrix
346  The factorization of the matrix is stored in #factor if #factorized != 0.
347  Otherwise #factor is undefined.
348  */
350  /// \c true iff \ref soplex::SPxBasis::factor "factor" = \ref soplex::SPxBasis::matrix "matrix" \f$^{-1}\f$.
352 
353  /// number of updates before refactorization.
354  /** When a vector of the basis matrix is exchanged by a call to method
355  #change(), the LU factorization of the matrix is updated
356  accordingly. However, after atmost #maxUpdates updates of the
357  factorization, it is recomputed in order to regain numerical
358  stability and reduce fill in.
359  */
361 
362  /// allowed increase of nonzeros before refactorization.
363  /** When the number of nonzeros in LU factorization exceeds
364  #nonzeroFactor times the number of nonzeros in B, the
365  basis matrix is refactorized.
366  */
368 
369  /// allowed increase in realtive fill before refactorization
370  /** When the real relative fill is bigger than fillFactor times lastFill
371  * the Basis will be refactorized.
372  */
374  /* Rank-1-updates to the basis may be performed via method #change(). In
375  this case, the factorization is updated, and the following members are
376  reset.
377  */
378  int iterCount; ///< number of calls to change() since last manipulation
379  int updateCount; ///< number of calls to change() since last factorize()
380  int totalUpdateCount;///< number of updates
381  Timer totalUpdateTime;///< time spent in updates
382  int nzCount; ///< number of nonzeros in basis matrix
383  int lastMem; ///< memory needed after last fresh factorization
384  Real lastFill; ///< fill ratio that occured during last factorization
385  int lastNzCount; ///< number of nonzeros in basis matrix after last fresh factorization
386 
387  SPxId lastin; ///< lastEntered(): variable entered the base last
388  SPxId lastout; ///< lastLeft(): variable left the base last
389  int lastidx; ///< lastIndex(): basis index where last update was done
390  Real minStab; ///< minimum stability
391  //@}
392 
393 private:
394 
395  //------------------------------------
396  //**@name Private data */
397  //@{
398  SPxStatus thestatus; ///< current status of the basis.
399  Desc thedesc; ///< the basis' Descriptor
400  bool freeSlinSolver; ///< true iff factor should be freed inside of this object
401  //@}
402 
403 public:
404 
405  //------------------------------------------------
406  /**@name Status and Descriptor related Methods */
407  //@{
408  /// returns current SPxStatus.
410  {
411  return thestatus;
412  }
413 
414  /// sets basis SPxStatus to \p stat.
415  void setStatus(SPxStatus stat)
416  {
417  METHOD( "SPxBasis::setStatus()" );
418 
419  if( thestatus != stat )
420  {
421  MSG_DEBUG( spxout << "DBSTAT01 SPxBasis::setStatus(): status: "
422  << int(thestatus) << " (" << thestatus << ") -> "
423  << int(stat) << " (" << stat << ")" << std::endl; )
424 
425  thestatus = stat;
426  if( stat == NO_PROBLEM )
427  invalidate();
428  }
429  }
430 
431  // TODO control factorization frequency dynamically
432  /// change maximum number of iterations until a refactorization is performed
433  void setMaxUpdates( int maxUp )
434  {
435  assert(maxUp >= 0);
436  maxUpdates = maxUp;
437  }
438 
439  /// returns maximum number of updates before a refactorization is performed
441  {
442  return maxUpdates;
443  }
444 
445  ///
446  const Desc& desc() const
447  {
448  return thedesc;
449  }
450  /// returns current basis Descriptor.
452  {
453  return thedesc;
454  }
455 
456  /// dual Status for the \p i'th column variable of the loaded LP.
457  Desc::Status dualColStatus(int i) const;
458 
459  /// dual Status for the column variable with ID \p id of the loaded LP.
460  Desc::Status dualStatus(const SPxColId& id) const;
461 
462  /// dual Status for the \p i'th row variable of the loaded LP.
463  Desc::Status dualRowStatus(int i) const;
464 
465  /// dual Status for the row variable with ID \p id of the loaded LP.
466  Desc::Status dualStatus(const SPxRowId& id) const;
467 
468  /// dual Status for the variable with ID \p id of the loaded LP.
469  /** It is automatically detected, whether the \p id is one of a
470  row or a column variable, and the correct row or column status
471  is returned.
472  */
473  Desc::Status dualStatus(const SPxId& id) const
474  {
475  return id.isSPxRowId()
476  ? dualStatus(SPxRowId(id))
477  : dualStatus(SPxColId(id));
478  }
479  //@}
480 
481 
482  //-----------------------------------
483  /**@name Inquiry Methods */
484  //@{
485  ///
486  inline SPxId& baseId(int i)
487  {
488  return theBaseId[i];
489  }
490  /// returns the Id of the \p i'th basis vector.
491  inline SPxId baseId(int i) const
492  {
493  return theBaseId[i];
494  }
495 
496  /// returns the \p i'th basic vector.
497  const SVector& baseVec(int i) const
498  {
499  assert( matrixIsSetup );
500  return *matrix[i];
501  }
502 
503  /// returns SPxId of last vector included to the basis.
504  inline SPxId lastEntered() const
505  {
506  return lastin;
507  }
508 
509  /// returns SPxId of last vector that left the basis.
510  inline SPxId lastLeft() const
511  {
512  return lastout;
513  }
514 
515  /// returns index in basis where last update was done.
516  inline int lastIndex() const
517  {
518  return lastidx;
519  }
520 
521  /// returns number of basis changes since last refactorization.
522  inline int lastUpdate() const
523  {
524  return updateCount;
525  }
526 
527  /// returns number of basis changes since last \ref soplex::SPxBasis::load() "load()".
528  inline int iteration() const
529  {
530  return iterCount;
531  }
532  /// returns loaded solver.
533  inline SPxSolver* solver() const
534  {
535  return theLP;
536  }
537  //@}
538 
539  //-----------------------------------
540  /**@name Linear Algebra */
541  //@{
542  /// Basis-vector product.
543  /** Depending on the representation, for an SPxBasis B,
544  B.multBaseWith(x) computes
545  - \f$x \leftarrow Bx\f$ in the columnwise case, and
546  - \f$x \leftarrow x^TB\f$ in the rowwise case.
547 
548  Both can be seen uniformly as multiplying the basis matrix \p B with
549  a vector \p x aligned the same way as the \em vectors of \p B.
550  */
551  Vector& multBaseWith(Vector& x) const;
552 
553  /// Vector-basis product.
554  /** Depending on the representation, for a #SPxBasis B,
555  B.multWithBase(x) computes
556  - \f$x \leftarrow x^TB\f$ in the columnwise case and
557  - \f$x \leftarrow Bx\f$ in the rowwise case.
558 
559  Both can be seen uniformly as multiplying the basis matrix \p B with
560  a vector \p x aligned the same way as the \em covectors of \p B.
561  */
562  Vector& multWithBase(Vector& x) const;
563 
564  /// returns the stability of the basis matrix.
565  Real stability() const
566  {
567  return factor->stability();
568  }
569  ///
570  void solve(Vector& x, const Vector& rhs)
571  {
572  METHOD( "SPxBasis::solve()" );
573  if (!factorized)
574  factorize();
575  factor->solveRight(x, rhs);
576  }
577  ///
578  void solve(SSVector& x, const SVector& rhs)
579  {
580  METHOD( "SPxBasis::solve()" );
581  if (!factorized)
582  factorize();
583  factor->solveRight(x, rhs);
584  }
585  /// solves linear system with basis matrix.
586  /** Depending on the representation, for a SPxBasis B,
587  B.solve(x) computes
588  - \f$x \leftarrow B^{-1}rhs\f$ in the columnwise case and
589  - \f$x \leftarrow rhs^TB^{-1}\f$ in the rowwise case.
590 
591  Both can be seen uniformly as solving a linear system with the basis
592  matrix \p B and a right handside vector \p x aligned the same way as
593  the \em vectors of \p B.
594  */
595  void solve4update(SSVector& x, const SVector& rhs)
596  {
597  METHOD( "SPxBasis::solve4update()" );
598  if (!factorized)
599  factorize();
600  factor->solveRight4update(x, rhs);
601  }
602  /// solves two systems in one call.
603  void solve4update(SSVector& x, Vector& y, const SVector& rhsx, SSVector& rhsy)
604  {
605  METHOD( "SPxBasis::solve4update()" );
606  if (!factorized)
607  factorize();
608  factor->solve2right4update(x, y, rhsx, rhsy);
609  }
610  /// solves three systems in one call.
611  void solve4update(SSVector& x, Vector& y, Vector& y2,
612  const SVector& rhsx, SSVector& rhsy, SSVector& rhsy2)
613  {
614  METHOD( "SPxBasis::solve4update()" );
615  if (!factorized)
616  factorize();
617  assert(rhsy.isSetup());
618  assert(rhsy2.isSetup());
619  factor->solve3right4update(x, y, y2, rhsx, rhsy, rhsy2);
620  }
621 
622  /// Cosolves linear system with basis matrix.
623  /** Depending on the representation, for a SPxBasis B,
624  B.coSolve(x) computes
625  - \f$x \leftarrow rhs^TB^{-1}\f$ in the columnwise case and
626  - \f$x \leftarrow B^{-1}rhs\f$ in the rowwise case.
627 
628  Both can be seen uniformly as solving a linear system with the basis
629  matrix \p B and a right handside vector \p x aligned the same way as
630  the \em covectors of \p B.
631  */
632  void coSolve(Vector& x, const Vector& rhs)
633  {
634  METHOD( "SPxBasis::coSolve()" );
635  if (!factorized)
636  factorize();
637  factor->solveLeft(x, rhs);
638  }
639  ///
640  void coSolve(SSVector& x, const SVector& rhs)
641  {
642  METHOD( "SPxBasis::coSolve()" );
643  if (!factorized)
644  factorize();
645  factor->solveLeft(x, rhs);
646  }
647  /// solves two systems in one call.
648  void coSolve(SSVector& x, Vector& y, const SVector& rhsx, SSVector& rhsy)
649  {
650  METHOD( "SPxBasis::coSolve()" );
651  if (!factorized)
652  factorize();
653  factor->solveLeft(x, y, rhsx, rhsy);
654  }
655  //@}
656 
657 
658  //------------------------------------
659  /**@name Modification notification.
660  These methods must be called after the loaded LP has been modified.
661  */
662  //@{
663  /// inform SPxBasis, that \p n new rows had been added.
664  void addedRows(int n);
665  /// inform SPxBasis that row \p i had been removed.
666  void removedRow(int i);
667  /// inform SPxBasis that rows in \p perm with negative entry were removed.
668  void removedRows(const int perm[]);
669  /// inform SPxBasis that \p n new columns had been added.
670  void addedCols(int n);
671  /// inform SPxBasis that column \p i had been removed.
672  void removedCol(int i);
673  /// inform SPxBasis that columns in \p perm with negative entry were removed.
674  void removedCols(const int perm[]);
675  /// inform SPxBasis that a row had been changed.
676  void changedRow(int);
677  /// inform SPxBasis that a column had been changed.
678  void changedCol(int);
679  /// inform SPxBasis that a matrix entry had been changed.
680  void changedElement(int, int);
681  //@}
682 
683 
684  //--------------------------------
685  /**@name Miscellaneous */
686  //@{
687  /// performs basis update.
688  /** Changes the \p i 'th vector of the basis with the vector associated to
689  \p id. This includes:
690  - updating the factorization, or recomputing it from scratch by
691  calling \ref soplex::SPxSolver::factorize() "factorize()",
692  - resetting \ref soplex::SPxSolver::lastEntered() "lastEntered()",
693  - resetting \ref soplex::SPxSolver::lastIndex() "lastIndex()",
694  - resetting \ref soplex::SPxSolver::lastLeft() "lastLeft()",
695  - resetting \ref soplex::SPxSolver::lastUpdate() "lastUpdate()",
696  - resetting \ref soplex::SPxSolver::iterations() "iterations()".
697 
698  The basis descriptor is \em not \em modified, since #factor()
699  cannot know about how to set up the status of the involved variables
700  correctly.
701 
702  A vector \p enterVec may be passed for a fast ETA update of the LU
703  factorization associated to the basis. It must be initialized with
704  the solution vector \f$x\f$ of the right linear system \f$Bx = b\f$
705  with the entering vector as right-hand side vector \f$b\f$, where \f$B\f$
706  denotes the basis matrix. This can be computed using method #solve().
707  When using FAST updates, a vector \p eta may be passed for
708  improved performance. It must be initialized by a call to
709  factor->solveRightUpdate() as described in SLinSolver. The
710  implementation hidden behind FAST updates depends on the
711  SLinSolver implementation class.
712  */
713  virtual void change(int i, SPxId& id,
714  const SVector* enterVec, const SSVector* eta = 0);
715 
716  /** Load basis from \p in in MPS format. If \p rowNames and \p colNames
717  * are \c NULL, default names are used for the constraints and variables.
718  */
719  virtual bool readBasis(std::istream& in,
720  const NameSet* rowNames, const NameSet* colNames);
721 
722  /** Write basis to \p os in MPS format. If \p rowNames and \p colNames are
723  * \c NULL, default names are used for the constraints and variables.
724  */
725  virtual void writeBasis(std::ostream& os,
726  const NameSet* rownames, const NameSet* colnames) const;
727 
728  virtual void printMatrix() const;
729 
730  /** Prints current basis matrix to a file using the MatrixMarket format:
731  * row col value
732  * The filename is basis/basis[number].mtx where number is a parameter.
733  */
734  void printMatrixMTX(int number);
735 
736  /// checks if a Descriptor is valid for the current LP w.r.t. its bounds
737  virtual bool isDescValid(const Desc& ds);
738 
739  /// sets up basis.
740  /** Loads a Descriptor to the basis and sets up the basis matrix and
741  all vectors accordingly. The Descriptor must have the same number of
742  rows and columns as the currently loaded LP.
743  */
744  virtual void loadDesc(const Desc&);
745 
746  /// sets up linear solver to use.
747  /** If destroy is true, solver will be freed inside this object, e.g. in the destructor.
748  */
749  virtual void loadSolver(SLinSolver* solver, const bool destroy = false);
750 
751  /// loads the LP \p lp to the basis.
752  /** This involves resetting all counters to 0 and setting up a regular
753  default basis consisting of slacks, artificial variables or bounds.
754  */
755  virtual void load(SPxSolver* lp);
756 
757  /// unloads the LP from the basis.
758  virtual void unLoad()
759  {
760  METHOD( "SPxBasis::unLoad()" );
761  theLP = 0;
763  }
764 
765  /// invalidates actual basis.
766  /** This method makes the basis matrix and vectors invalid. The basis will
767  be reinitialized if needed.
768  */
769  void invalidate();
770 
771  /// Restores initial basis.
772  /** This method changes the basis to that present just after loading the LP
773  (see addedRows() and addedCols()). This may be necessary if a row or a
774  column is changed, since then the current basis may become singular.
775  */
776  void restoreInitialBasis();
777 
778  /// output basis entries.
779  void dump();
780 
781  /// consistency check.
782  bool isConsistent() const;
783 
784  /// time spent in updates
786  {
787  return totalUpdateTime.userTime();
788  }
789  /// number of updates performed
791  {
792  return totalUpdateCount;
793  }
794 
795  /// returns statistical information in form of a string.
796  std::string statistics() const
797  {
798  std::stringstream s;
799  s << factor->statistics()
800 #ifdef MEASUREUPDATETIME
801  << "Updates : " << std::setw(10) << getTotalUpdateCount() << std::endl
802  << " Time spent : " << std::setw(10) << getTotalUpdateTime() << std::endl
803 #endif
804  ;
805 
806  return s.str();
807  }
808  //@}
809 
810  //--------------------------------------
811  /**@name Constructors / Destructors */
812  //@{
813  /// default constructor.
814  SPxBasis();
815  /// copy constructor
816  SPxBasis(const SPxBasis& old);
817  /// assignment operator
818  SPxBasis& operator=(const SPxBasis& rhs);
819  /// destructor.
820  virtual ~SPxBasis();
821  //@}
822 
823 
824 protected:
825 
826  //--------------------------------------
827  /**@name Protected helpers */
828  //@{
829  /// loads \ref soplex::SPxBasis::matrix "matrix" according to the SPxId%s stored in \ref soplex::SPxBasis::theBaseId "theBaseId".
830  /** This method must be called whenever there is a chance, that the vector
831  pointers may have changed due to manipulations of the LP.
832  */
833  void loadMatrixVecs();
834 
835  /// resizes internal arrays.
836  /** When a new LP is loaded, the basis matrix and vectors become invalid
837  and possibly also of the wrong dimension. Hence, after loading an
838  LP, #reDim() is called to reset all arrays etc. accoriding to the
839  dimensions of the loaded LP.
840  */
841  void reDim();
842 
843  /// factorizes the basis matrix.
844  virtual void factorize();
845 
846  /// sets descriptor representation according to loaded LP.
847  void setRep();
848  //@}
849 
850 };
851 
852 
853 //
854 // Auxiliary functions.
855 //
856 
857 /// Pretty-printing of basis status.
858 std::ostream& operator<<( std::ostream& os,
859  const SPxBasis::SPxStatus& status );
860 
861 
862 } // namespace soplex
863 #endif // _SPXBASIS_H_
864 
865 //-----------------------------------------------------------------------------
866 //Emacs Local Variables:
867 //Emacs mode:c++
868 //Emacs c-basic-offset:3
869 //Emacs tab-width:8
870 //Emacs indent-tabs-mode:nil
871 //Emacs End:
872 //-----------------------------------------------------------------------------