SoPlex Doxygen Documentation
spxdefaultrt.cpp
Go to the documentation of this file.
1 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
2 /* */
3 /* This file is part of the class library */
4 /* SoPlex --- the Sequential object-oriented simPlex. */
5 /* */
6 /* Copyright (C) 1996-2012 Konrad-Zuse-Zentrum */
7 /* fuer Informationstechnik Berlin */
8 /* */
9 /* SoPlex is distributed under the terms of the ZIB Academic Licence. */
10 /* */
11 /* You should have received a copy of the ZIB Academic License */
12 /* along with SoPlex; see the file COPYING. If not email to soplex@zib.de. */
13 /* */
14 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
15 
16 //#define DEBUGGING 1
17 
18 #include <assert.h>
19 #include <iostream>
20 
21 #include "spxdefines.h"
22 #include "spxdefaultrt.h"
23 
24 namespace soplex
25 {
26 /**
27  * Here comes the ratio test for selecting a variable to leave the basis.
28  * It is assumed that Vec.delta() and fVec.idx() have been setup
29  * correctly!
30  *
31  * The leaving variable is selected such that the update of fVec() (using
32  * fVec.value() * fVec.delta()) keeps the basis feasible within
33  * solver()->entertol(). Hence, fVec.value() must be chosen such that one
34  * updated value of theFvec just reaches its bound and no other one exceeds
35  * them by more than solver()->entertol(). Further, fVec.value() must have the
36  * same sign as argument \p val.
37  *
38  * The return value of selectLeave() is the number of a variable in the
39  * basis selected to leave the basis. -1 indicates that no variable could be
40  * selected. Otherwise, parameter \p val contains the chosen fVec.value().
41  */
43 {
44  solver()->fVec().delta().setup();
45 
46  const Real* vec = solver()->fVec().get_const_ptr();
47  const Real* upd = solver()->fVec().delta().values();
48  const IdxSet& idx = solver()->fVec().idx();
49  const Real* ub = solver()->ubBound().get_const_ptr();
50  const Real* lb = solver()->lbBound().get_const_ptr();
51 
52  Real epsilon = solver()->epsilon();
53  int leave = -1;
54 
55  Real x;
56  int i;
57  int j;
58 
59  // PARALLEL the j loop could be parallelized
60  if (val > 0)
61  {
62  // Loop over NZEs of delta vector.
63  for( j = 0; j < idx.size(); ++j)
64  {
65  i = idx.index(j);
66  x = upd[i];
67 
68  if (x > epsilon)
69  {
70  if (ub[i] < infinity)
71  {
72  Real y = (ub[i] - vec[i] + delta) / x;
73 
74  if (y < val)
75  {
76  leave = i;
77  val = y;
78  }
79  }
80  }
81  else if (x < -epsilon)
82  {
83  if (lb[i] > -infinity)
84  {
85  Real y = (lb[i] - vec[i] - delta) / x;
86 
87  if (y < val)
88  {
89  leave = i;
90  val = y;
91  }
92  }
93  }
94  }
95  if (leave >= 0)
96  {
97  x = upd[leave];
98 
99  // BH 2005-11-30: It may well happen that the basis is degenerate and the
100  // selected leaving variable is (at most delta) beyond its bound. (This
101  // happens for instance on LP/netlib/adlittle.mps with setting -r -t0.)
102  // In that case we do a pivot step with length zero to avoid difficulties.
103  if ( ( x > epsilon && vec[leave] >= ub[leave] ) ||
104  ( x < -epsilon && vec[leave] <= lb[leave] ) )
105  {
106  val = 0.0;
107  }
108  else
109  {
110  val = (x > epsilon) ? ub[leave] : lb[leave];
111  val = (val - vec[leave]) / x;
112  }
113  }
114 
115  ASSERT_WARN( "WDEFRT01", val > -epsilon );
116  }
117  else
118  {
119  for( j = 0; j < idx.size(); ++j)
120  {
121  i = idx.index(j);
122  x = upd[i];
123 
124  if (x < -epsilon)
125  {
126  if (ub[i] < infinity)
127  {
128  Real y = (ub[i] - vec[i] + delta) / x;
129 
130  if (y > val)
131  {
132  leave = i;
133  val = y;
134  }
135  }
136  }
137  else if (x > epsilon)
138  {
139  if (lb[i] > -infinity)
140  {
141  Real y = (lb[i] - vec[i] - delta) / x;
142 
143  if (y > val)
144  {
145  leave = i;
146  val = y;
147  }
148  }
149  }
150  }
151  if (leave >= 0)
152  {
153  x = upd[leave];
154 
155  // See comment above.
156  if ( ( x < -epsilon && vec[leave] >= ub[leave] ) ||
157  ( x > epsilon && vec[leave] <= lb[leave] ) )
158  {
159  val = 0.0;
160  }
161  else
162  {
163  val = (x < epsilon) ? ub[leave] : lb[leave];
164  val = (val - vec[leave]) / x;
165  }
166  }
167 
168  ASSERT_WARN( "WDEFRT02", val < epsilon );
169  }
170  return leave;
171 }
172 
173 /**
174  Here comes the ratio test. It is assumed that theCoPvec.delta() and
175  theCoPvec.idx() have been setup correctly!
176  */
178 {
179  solver()->coPvec().delta().setup();
180  solver()->pVec().delta().setup();
181 
182  const Real* pvec = solver()->pVec().get_const_ptr();
183  const Real* pupd = solver()->pVec().delta().values();
184  const IdxSet& pidx = solver()->pVec().idx();
185  const Real* lpb = solver()->lpBound().get_const_ptr();
186  const Real* upb = solver()->upBound().get_const_ptr();
187 
188  const Real* cvec = solver()->coPvec().get_const_ptr();
189  const Real* cupd = solver()->coPvec().delta().values();
190  const IdxSet& cidx = solver()->coPvec().idx();
191  const Real* lcb = solver()->lcBound().get_const_ptr();
192  const Real* ucb = solver()->ucBound().get_const_ptr();
193 
194  Real epsilon = solver()->epsilon();
195  Real val = max;
196  int pnum = -1;
197  int cnum = -1;
198 
199  SPxId enterId;
200  int i;
201  int j;
202  Real x;
203 
204  // PARALLEL the j loops could be parallelized
205  if (val > 0)
206  {
207  for( j = 0; j < pidx.size(); ++j )
208  {
209  i = pidx.index(j);
210  x = pupd[i];
211 
212  if (x > epsilon)
213  {
214  if (upb[i] < infinity)
215  {
216  Real y = (upb[i] - pvec[i] + delta) / x;
217 
218  if (y < val)
219  {
220  enterId = solver()->id(i);
221  val = y;
222  pnum = j;
223  }
224  }
225  }
226  else if (x < -epsilon)
227  {
228  if (lpb[i] > -infinity)
229  {
230  Real y = (lpb[i] - pvec[i] - delta) / x;
231 
232  if (y < val)
233  {
234  enterId = solver()->id(i);
235  val = y;
236  pnum = j;
237  }
238  }
239  }
240  }
241  for( j = 0; j < cidx.size(); ++j )
242  {
243  i = cidx.index(j);
244  x = cupd[i];
245 
246  if (x > epsilon)
247  {
248  if (ucb[i] < infinity)
249  {
250  Real y = (ucb[i] - cvec[i] + delta) / x;
251 
252  if (y < val)
253  {
254  enterId = solver()->coId(i);
255  val = y;
256  cnum = j;
257  }
258  }
259  }
260  else if (x < -epsilon)
261  {
262  if (lcb[i] > -infinity)
263  {
264  Real y = (lcb[i] - cvec[i] - delta) / x;
265 
266  if (y < val)
267  {
268  enterId = solver()->coId(i);
269  val = y;
270  cnum = j;
271  }
272  }
273  }
274  }
275  if (cnum >= 0)
276  {
277  i = cidx.index(cnum);
278  x = cupd[i];
279  val = (x > epsilon) ? ucb[i] : lcb[i];
280  val = (val - cvec[i]) / x;
281  }
282  else if (pnum >= 0)
283  {
284  i = pidx.index(pnum);
285  x = pupd[i];
286  val = (x > epsilon) ? upb[i] : lpb[i];
287  val = (val - pvec[i]) / x;
288  }
289  }
290  else
291  {
292  for( j = 0; j < pidx.size(); ++j )
293  {
294  i = pidx.index(j);
295  x = pupd[i];
296 
297  if (x > epsilon)
298  {
299  if (lpb[i] > -infinity)
300  {
301  Real y = (lpb[i] - pvec[i] - delta) / x;
302 
303  if (y > val)
304  {
305  enterId = solver()->id(i);
306  val = y;
307  pnum = j;
308  }
309  }
310  }
311  else if (x < -epsilon)
312  {
313  if (upb[i] < infinity)
314  {
315  Real y = (upb[i] - pvec[i] + delta) / x;
316 
317  if (y > val)
318  {
319  enterId = solver()->id(i);
320  val = y;
321  pnum = j;
322  }
323  }
324  }
325  }
326  for( j = 0; j < cidx.size(); ++j )
327  {
328  i = cidx.index(j);
329  x = cupd[i];
330 
331  if (x > epsilon)
332  {
333  if (lcb[i] > -infinity)
334  {
335  Real y = (lcb[i] - cvec[i] - delta) / x;
336 
337  if (y > val)
338  {
339  enterId = solver()->coId(i);
340  val = y;
341  cnum = j;
342  }
343  }
344  }
345  else if (x < -epsilon)
346  {
347  if (ucb[i] < infinity)
348  {
349  Real y = (ucb[i] - cvec[i] + delta) / x;
350 
351  if (y > val)
352  {
353  enterId = solver()->coId(i);
354  val = y;
355  cnum = j;
356  }
357  }
358  }
359  }
360  if (cnum >= 0)
361  {
362  i = cidx.index(cnum);
363  x = cupd[i];
364  val = (x < epsilon) ? ucb[i] : lcb[i];
365  val = (val - cvec[i]) / x;
366  }
367  else if (pnum >= 0)
368  {
369  i = pidx.index(pnum);
370  x = pupd[i];
371  val = (x < epsilon) ? upb[i] : lpb[i];
372  val = (val - pvec[i]) / x;
373  }
374  }
375 
376  if (enterId.isValid() && solver()->isBasic(enterId))
377  {
378  MSG_DEBUG( spxout << "DDEFRT01 isValid() && isBasic(): max=" << max
379  << std::endl; )
380  if (cnum >= 0)
381  solver()->coPvec().delta().clearNum(cnum);
382  else
383  solver()->pVec().delta().clearNum(pnum);
384  return SPxDefaultRT::selectEnter(max, 0);
385  }
386 
387  MSG_DEBUG(
388  if( !enterId.isValid() )
389  spxout << "DDEFRT02 !isValid(): max=" << max << ", x=" << x << std::endl;
390  )
391  max = val;
392 
393  return enterId;
394 }
395 
396 } // namespace soplex
397 
398 //-----------------------------------------------------------------------------
399 //Emacs Local Variables:
400 //Emacs mode:c++
401 //Emacs c-basic-offset:3
402 //Emacs tab-width:8
403 //Emacs indent-tabs-mode:nil
404 //Emacs End:
405 //-----------------------------------------------------------------------------