SoPlex Doxygen Documentation
spxmainsm.cpp
Go to the documentation of this file.
1 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
2 /* */
3 /* This file is part of the class library */
4 /* SoPlex --- the Sequential object-oriented simPlex. */
5 /* */
6 /* Copyright (C) 1996-2012 Konrad-Zuse-Zentrum */
7 /* fuer Informationstechnik Berlin */
8 /* */
9 /* SoPlex is distributed under the terms of the ZIB Academic Licence. */
10 /* */
11 /* You should have received a copy of the ZIB Academic License */
12 /* along with SoPlex; see the file COPYING. If not email to soplex@zib.de. */
13 /* */
14 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
15 
16 //#define DEBUGGING 1
17 
18 #include <iostream>
19 
20 #include "spxmainsm.h"
21 #include "array.h"
22 #include "dataarray.h"
23 #include "sorter.h"
24 #include "spxout.h"
25 #include <sstream>
26 #include <iostream>
27 #include <fstream>
28 
29 
30 //rows
31 #define FREE_LHS_RHS 1
32 #define FREE_CONSTRAINT 1
33 #define EMPTY_CONSTRAINT 1
34 #define ROW_SINGLETON 1
35 #define FORCE_CONSTRAINT 1
36 //cols
37 #define FREE_BOUNDS 1
38 #define EMPTY_COLUMN 1
39 #define FIX_VARIABLE 1
40 #define FREE_ZERO_OBJ_VARIABLE 1
41 #define ZERO_OBJ_COL_SINGLETON 1
42 #define DOUBLETON_EQUATION 1
43 #define FREE_COL_SINGLETON 1
44 //dual
45 #define DOMINATED_COLUMN 1
46 #define WEAKLY_DOMINATED_COLUMN 1
47 
48 
49 #define EXTREMES 1
50 #define ROWS 1
51 #define COLS 1
52 #define DUAL 1
53 ///@todo check: with this simplification step, the unsimplified basis seems to be slightly suboptimal for some instances
54 #define DUPLICATE_ROWS 1
55 #define DUPLICATE_COLS 1
56 
57 
58 #ifndef NDEBUG
59 #define CHECK_BASIC_DIM 1
60 #endif // NDEBUG
61 
62 namespace soplex
63 {
66 {
67  int numBasis = 0;
68  for(int rs = 0; rs < nRows; ++rs)
69  {
70  if(rows[rs] == SPxSolver::BASIC)
71  numBasis++;
72  }
73 
74  for(int cs = 0; cs < nCols; ++cs)
75  {
76  if(cols[cs] == SPxSolver::BASIC)
77  numBasis++;
78  }
79  return numBasis == nRows;
80 }
81 
84  DataArray<SPxSolver::VarStatus>& rStatus) const
85 {
86  // correcting the change of idx by deletion of the row:
87  s[m_old_i] = s[m_i];
88  y[m_old_i] = y[m_i];
89  rStatus[m_old_i] = rStatus[m_i];
90 
91  // primal:
92  Real slack = 0.0;
93 
94  for (int k = 0; k < m_row.size(); ++k)
95  slack += m_row.value(k) * x[m_row.index(k)];
96 
97  s[m_i] = slack;
98 
99  // dual:
100  y[m_i] = 0.0;
101 
102  // basis:
103  rStatus[m_i] = SPxSolver::BASIC;
104 
105 #if CHECK_BASIC_DIM
106  if (!checkBasisDim(rStatus, cStatus))
107  {
108  throw SPxInternalCodeException("XMAISM15 Dimension doesn't match after this step.");
109  }
110 #endif
111 }
112 
115  DataArray<SPxSolver::VarStatus>& rStatus) const
116 {
117  // correcting the change of idx by deletion of the row:
118  s[m_old_i] = s[m_i];
119  y[m_old_i] = y[m_i];
120  rStatus[m_old_i] = rStatus[m_i];
121 
122  // primal:
123  s[m_i] = 0.0;
124 
125  // dual:
126  y[m_i] = 0.0;
127 
128  // basis:
129  rStatus[m_i] = SPxSolver::BASIC;
130 
131 #if CHECK_BASIC_DIM
132  if (!checkBasisDim(rStatus, cStatus))
133  {
134  throw SPxInternalCodeException("XMAISM16 Dimension doesn't match after this step.");
135  }
136 #endif
137 }
138 
141  DataArray<SPxSolver::VarStatus>& rStatus) const
142 {
143  // correcting the change of idx by deletion of the row:
144  s[m_old_i] = s[m_i];
145  y[m_old_i] = y[m_i];
146  rStatus[m_old_i] = rStatus[m_i];
147 
148  Real aij = m_col[m_i];
149 
150  // primal:
151  s[m_i] = aij * x[m_j];
152 
153  // dual & basis:
154  Real val = m_obj;
155 
156  for(int k = 0; k < m_col.size(); ++k)
157  if (m_col.index(k) != m_i)
158  val -= m_col.value(k) * y[m_col.index(k)];
159 
160  Real m_newLo = (aij > 0) ? m_lhs/aij : m_rhs/aij; // implicit lhs
161  Real m_newUp = (aij > 0) ? m_rhs/aij : m_lhs/aij; // implicit rhs
162 
163  switch(cStatus[m_j])
164  {
165  case SPxSolver::FIXED:
166  if(m_newLo <= m_oldLo && m_newUp >= m_oldUp)
167  {
168  // this row is totally redundant, has not changed bound of xj
169  rStatus[m_i] = SPxSolver::BASIC;
170  y[m_i] = 0.0;
171  }
172  else if(EQrel(m_newLo, m_newUp, eps()))
173  {
174  // row is in the type aij * xj = b
175  assert(EQrel(m_newLo, x[m_j], eps()));
176 
177  if(EQrel(m_oldLo, m_oldUp, eps()))
178  {
179  // xj has been fixed in other row
180  rStatus[m_i] = SPxSolver::BASIC;
181  y[m_i] = 0.0;
182  }
183  else if((EQrel(m_oldLo, x[m_j], eps()) && r[m_j] <= -eps())
184  || (EQrel(m_oldUp, x[m_j], eps()) && r[m_j] >= eps())
185  || (!EQrel(m_oldLo, x[m_j], eps()) && !(EQrel(m_oldUp, x[m_j], eps()))))
186  {
187  // if x_j on lower but reduced cost is negative, or x_j on upper but reduced cost is positive, or x_j not on bound: basic
188  rStatus[m_i] = (EQrel(m_lhs, x[m_j]*aij, eps())) ? SPxSolver::ON_LOWER : SPxSolver::ON_UPPER;
189  cStatus[m_j] = SPxSolver::BASIC;
190  y[m_i] = val / aij;
191  r[m_j] = 0.0;
192  }
193  else
194  {
195  // set x_j on one of the bound
196  assert(EQrel(m_oldLo, x[m_j], eps()) || EQrel(m_oldUp, x[m_j], eps()));
197 
198  cStatus[m_j] = EQrel(m_oldLo, x[m_j], eps()) ? SPxSolver::ON_LOWER : SPxSolver::ON_UPPER;
199  rStatus[m_i] = SPxSolver::BASIC;
200  y[m_i] = 0.0;
201  r[m_j] = val;
202  }
203  }
204  else if(EQrel(m_newLo, m_oldUp, eps()))
205  {
206  // row is in the type xj >= b/aij, try to set xj on upper
207  if(r[m_j] >= eps())
208  {
209  // the reduced cost is positive, xj should in the basic
210  assert(EQrel(m_rhs, x[m_j]*aij, eps()) || EQrel(m_lhs, x[m_j]*aij, eps()));
211 
212  rStatus[m_i] = (EQrel(m_lhs, x[m_j]*aij, eps())) ? SPxSolver::ON_LOWER : SPxSolver::ON_UPPER;
213  cStatus[m_j] = SPxSolver::BASIC;
214  y[m_i] = val / aij;
215  r[m_j] = 0.0;
216  }
217  else
218  {
219  assert(EQrel(m_oldUp, x[m_j], eps()));
220 
221  cStatus[m_j] = SPxSolver::ON_UPPER;
222  rStatus[m_i] = SPxSolver::BASIC;
223  y[m_i] = 0.0;
224  r[m_j] = val;
225  }
226  }
227  else if(EQrel(m_newUp, m_oldLo, eps()))
228  {
229  // row is in the type xj <= b/aij, try to set xj on lower
230  if(r[m_j] <= -eps())
231  {
232  // the reduced cost is negative, xj should in the basic
233  assert(EQrel(m_rhs, x[m_j]*aij, eps()) || EQrel(m_lhs, x[m_j]*aij, eps()));
234 
235  rStatus[m_i] = (EQrel(m_lhs, x[m_j]*aij, eps())) ? SPxSolver::ON_LOWER : SPxSolver::ON_UPPER;
236  cStatus[m_j] = SPxSolver::BASIC;
237  y[m_i] = val / aij;
238  r[m_j] = 0.0;
239  }
240  else
241  {
242  assert(EQrel(m_oldLo, x[m_j], eps()));
243 
244  cStatus[m_j] = SPxSolver::ON_LOWER;
245  rStatus[m_i] = SPxSolver::BASIC;
246  y[m_i] = 0.0;
247  r[m_j] = val;
248  }
249  }
250  else
251  {
252  // the variable is set to FIXED by other constraints, i.e., this singleton row is redundant
253  rStatus[m_i] = SPxSolver::BASIC;
254  y[m_i] = 0.0;
255  }
256  break;
257  case SPxSolver::BASIC:
258  rStatus[m_i] = SPxSolver::BASIC;
259  y[m_i] = 0.0;
260  r[m_j] = 0.0;
261  break;
262  case SPxSolver::ON_LOWER:
263  if(EQrel(m_oldLo, x[m_j], eps())) // xj may stay on lower
264  {
265  rStatus[m_i] = SPxSolver::BASIC;
266  y[m_i] = 0.0;
267  r[m_j] = val;
268  }
269  else // if reduced costs are negative or old lower bound not equal to xj, we need to change xj into the basis
270  {
271  assert(EQrel(m_rhs, x[m_j]*aij, eps()) || EQrel(m_lhs, x[m_j]*aij, eps()));
272 
273  cStatus[m_j] = SPxSolver::BASIC;
274  rStatus[m_i] = (EQrel(m_lhs, x[m_j]*aij, eps())) ? SPxSolver::ON_LOWER : SPxSolver::ON_UPPER;
275  y[m_i] = val / aij;
276  r[m_j] = 0.0;
277  }
278  break;
279  case SPxSolver::ON_UPPER:
280  if(EQrel(m_oldUp, x[m_j], eps())) // xj may stay on upper
281  {
282  rStatus[m_i] = SPxSolver::BASIC;
283  y[m_i] = 0.0;
284  r[m_j] = val;
285  }
286  else // if reduced costs are positive or old upper bound not equal to xj, we need to change xj into the basis
287  {
288  assert(EQrel(m_rhs, x[m_j]*aij, eps()) || EQrel(m_lhs, x[m_j]*aij, eps()));
289 
290  cStatus[m_j] = SPxSolver::BASIC;
291  rStatus[m_i] = (EQrel(m_lhs, x[m_j]*aij, eps())) ? SPxSolver::ON_LOWER : SPxSolver::ON_UPPER;
292  y[m_i] = val / aij;
293  r[m_j] = 0.0;
294  }
295  break;
296  case SPxSolver::ZERO:
297  rStatus[m_i] = SPxSolver::BASIC;
298  y[m_i] = 0.0;
299  r[m_j] = val;
300  default:
301  break;
302  }
303 
304 #if CHECK_BASIC_DIM
305  if (!checkBasisDim(rStatus, cStatus))
306  {
307  throw SPxInternalCodeException("XMAISM17 Dimension doesn't match after this step.");
308  }
309 #endif
310 }
311 
314  DataArray<SPxSolver::VarStatus>& rStatus) const
315 {
316  // correcting the change of idx by deletion of the row:
317  s[m_old_i] = s[m_i];
318  y[m_old_i] = y[m_i];
319  rStatus[m_old_i] = rStatus[m_i];
320 
321  // primal:
322  s[m_i] = m_lRhs;
323 
324  // basis:
325  int cBasisCandidate = -1;
326  Real maxViolation = -1.0;
327  int bas_k = -1;
328 
329  for(int k = 0; k < m_row.size(); ++k)
330  {
331  int cIdx = m_row.index(k);
332  Real aij = m_row.value(k);
333  Real oldLo = m_oldLowers[k];
334  Real oldUp = m_oldUppers[k];
335 
336  switch(cStatus[cIdx])
337  {
338  case SPxSolver::FIXED:
339  if(m_fixed[k])
340  {
341  assert(EQrel(oldLo, x[cIdx], eps()) || EQrel(oldUp, x[cIdx], eps()));
342 
343  Real violation = fabs(r[cIdx]/aij);
344 
345  cStatus[cIdx] = EQrel(oldLo, x[cIdx], eps()) ? SPxSolver::ON_LOWER : SPxSolver::ON_UPPER;
346 
347  if( violation > maxViolation && ( (EQrel(oldLo, x[cIdx], eps()) && r[cIdx] < -eps()) || (EQrel(oldUp, x[cIdx], eps()) && r[cIdx] > eps()) ) )
348  {
349  maxViolation = violation;
350  cBasisCandidate = cIdx;
351  bas_k = k;
352  }
353  } // do nothing, if the old bounds are equal, i.e. variable has been not fixed in this row
354  break;
355  case SPxSolver::ON_LOWER:
356  case SPxSolver::ON_UPPER:
357  case SPxSolver::BASIC:
358  break;
359  default:
360  break;
361  }
362  }
363 
364  // dual and basis :
365  if(cBasisCandidate >= 0) // one of the variable in the row should in the basis
366  {
367  assert(EQrel(m_lRhs, m_rhs, eps()) || EQrel(m_lRhs, m_lhs, eps()));
368  assert(bas_k >= 0);
369  assert(cBasisCandidate == m_row.index(bas_k));
370 
371  cStatus[cBasisCandidate] = SPxSolver::BASIC;
372  rStatus[m_i] = (EQrel(m_lRhs, m_lhs, eps())) ? SPxSolver::ON_LOWER : SPxSolver::ON_UPPER;
373 
374  Real aij = m_row.value(bas_k);
375  Real multiplier = r[cBasisCandidate]/aij;
376  r[cBasisCandidate] = 0.0;
377 
378  for(int k = 0; k < m_row.size(); ++k) // update the reduced cost
379  {
380  if(k == bas_k)
381  {
382  continue;
383  }
384  r[m_row.index(k)] -= m_row.value(k) * multiplier;
385  }
386 
387  // compute the value of new dual variable (because we have a new row)
388  Real val = m_objs[bas_k];
389  DSVector basis_col = m_cols[bas_k];
390 
391  for(int k = 0; k < basis_col.size(); ++k)
392  {
393  if (basis_col.index(k) != m_i)
394  val -= basis_col.value(k) * y[basis_col.index(k)];
395  }
396 
397  y[m_i] = val/aij;
398  }
399  else // slack in the basis
400  {
401  rStatus[m_i] = SPxSolver::BASIC;
402  y[m_i] = 0.0;
403  }
404 
405 #if CHECK_BASIC_DIM
406  if (!checkBasisDim(rStatus, cStatus))
407  {
408  throw SPxInternalCodeException("XMAISM18 Dimension doesn't match after this step.");
409  }
410 #endif
411 }
412 
415  DataArray<SPxSolver::VarStatus>& rStatus) const
416 {
417  // update the index mapping; if m_correctIdx is false, we assume that this has happened already
418  if(m_correctIdx)
419  {
420  x[m_old_j] = x[m_j];
421  r[m_old_j] = r[m_j];
422  cStatus[m_old_j] = cStatus[m_j];
423  }
424 
425  // primal:
426  x[m_j] = m_val;
427 
428  for(int k = 0; k < m_col.size(); ++k)
429  s[m_col.index(k)] += m_col.value(k) * x[m_j];
430 
431  // dual:
432  Real val = m_obj;
433 
434  for(int k = 0; k < m_col.size(); ++k)
435  val -= m_col.value(k) * y[m_col.index(k)];
436 
437  r[m_j] = val;
438 
439  // basis:
440  if(EQrel(m_lower, m_upper))
441  {
442  assert(EQrel(m_lower, m_val));
443 
444  cStatus[m_j] = SPxSolver::FIXED;
445  }
446  else
447  {
448  assert(EQrel(m_val, m_lower) || EQrel(m_val, m_upper) || m_val == 0.0);
449 
450  cStatus[m_j] = EQrel(m_val, m_lower) ? SPxSolver::ON_LOWER : (EQrel(m_val, m_upper) ? SPxSolver::ON_UPPER : SPxSolver::ZERO);
451  }
452 
453 #if CHECK_BASIC_DIM
454  if(m_correctIdx)
455  {
456  if (!checkBasisDim(rStatus, cStatus))
457  {
458  throw SPxInternalCodeException("XMAISM19 Dimension doesn't match after this step.");
459  }
460  }
461 #endif
462 }
463 
467 {
468  // basis:
469  cStatus[m_j] = m_status;
470 }
471 
474  DataArray<SPxSolver::VarStatus>& rStatus) const
475 {
476  // correcting the change of idx by deletion of the column and corresponding rows:
477  x[m_old_j] = x[m_j];
478  r[m_old_j] = r[m_j];
479  cStatus[m_old_j] = cStatus[m_j];
480 
481  int rIdx = m_old_i - m_col.size() + 1;
482 
483  for(int k = 0; k < m_col.size(); ++k)
484  {
485  int rIdx_new = m_col.index(k);
486  s[rIdx] = s[rIdx_new];
487  y[rIdx] = y[rIdx_new];
488  rStatus[rIdx] = rStatus[rIdx_new];
489  rIdx++;
490  }
491 
492  // primal:
493  int domIdx = -1;
494  DSVector slack(m_col.size());
495 
496  if (m_loFree)
497  {
498  Real minRowUp = infinity;
499 
500  for(int k = 0; k < m_rows.size(); ++k)
501  {
502  Real val = 0.0;
503  const SVector& row = m_rows[k];
504 
505  for(int l = 0; l < row.size(); ++l)
506  if (row.index(l) != m_j)
507  val += row.value(l) * x[row.index(l)];
508 
509  Real scale = maxAbs(m_lRhs[k], val);
510 
511  if (scale < 1.0)
512  scale = 1.0;
513 
514  Real z = (m_lRhs[k] / scale) - (val / scale);
515 
516  if (isZero(z))
517  z = 0.0;
518 
519  Real up = z * scale / row[m_j];
520  slack.add(k, val);
521 
522  if (up < minRowUp)
523  {
524  minRowUp = up;
525  domIdx = k;
526  }
527  }
528 
529  if (m_bnd < minRowUp)
530  {
531  x[m_j] = m_bnd;
532  domIdx = -1;
533  }
534  else
535  x[m_j] = minRowUp;
536  }
537  else
538  {
539  Real maxRowLo = -infinity;
540 
541  for(int k = 0; k < m_rows.size(); ++k)
542  {
543  Real val = 0.0;
544  const SVector& row = m_rows[k];
545 
546  for(int l = 0; l < row.size(); ++l)
547  if (row.index(l) != m_j)
548  val += row.value(l) * x[row.index(l)];
549 
550  Real scale = maxAbs(m_lRhs[k], val);
551 
552  if (scale < 1.0)
553  scale = 1.0;
554 
555  Real z = (m_lRhs[k] / scale) - (val / scale);
556 
557  if (isZero(z))
558  z = 0.0;
559 
560  Real lo = z * scale / row[m_j];
561  slack.add(k, val);
562 
563  if (lo > maxRowLo)
564  {
565  maxRowLo = lo;
566  domIdx = k;
567  }
568  }
569 
570  if (m_bnd > maxRowLo)
571  {
572  x[m_j] = m_bnd;
573  domIdx = -1;
574  }
575  else
576  x[m_j] = maxRowLo;
577  }
578 
579  for(int k = 0; k < m_col.size(); ++k)
580  s[m_col.index(k)] = slack[k] + m_col.value(k) * x[m_j];
581 
582  // dual:
583  r[m_j] = 0.0;
584 
585  for(int k = 0; k < m_col.size(); ++k)
586  y[m_col.index(k)] = 0.0;
587 
588  // basis:
589  for(int k = 0; k < m_col.size(); ++k)
590  {
591  if (k != domIdx)
592  rStatus[m_col.index(k)] = SPxSolver::BASIC;
593 
594  else
595  {
596  cStatus[m_j] = SPxSolver::BASIC;
597  if (m_loFree)
598  rStatus[m_col.index(k)] = (m_col.value(k) > 0) ? SPxSolver::ON_UPPER : SPxSolver::ON_LOWER;
599  else
600  rStatus[m_col.index(k)] = (m_col.value(k) > 0) ? SPxSolver::ON_LOWER : SPxSolver::ON_UPPER;
601  }
602  }
603  if (domIdx == -1)
604  {
605  if (m_loFree)
606  cStatus[m_j] = SPxSolver::ON_UPPER;
607  else
608  cStatus[m_j] = SPxSolver::ON_LOWER;
609  }
610 
611 #if CHECK_BASIC_DIM
612  if (!checkBasisDim(rStatus, cStatus))
613  {
614  throw SPxInternalCodeException("XMAISM20 Dimension doesn't match after this step.");
615  }
616 #endif
617 }
618 
621  DataArray<SPxSolver::VarStatus>& rStatus) const
622 {
623  // correcting the change of idx by deletion of the column and corresponding rows:
624  x[m_old_j] = x[m_j];
625  r[m_old_j] = r[m_j];
626  cStatus[m_old_j] = cStatus[m_j];
627 
628  // primal & basis:
629  Real aij = m_row[m_j];
630 
631  if (isZero(s[m_i], 1e-6))
632  s[m_i] = 0.0;
633 
634  Real scale1 = maxAbs(m_lhs, s[m_i]);
635  Real scale2 = maxAbs(m_rhs, s[m_i]);
636 
637  if (scale1 < 1.0)
638  scale1 = 1.0;
639  if (scale2 < 1.0)
640  scale2 = 1.0;
641 
642  Real z1 = (m_lhs / scale1) - (s[m_i] / scale1);
643  Real z2 = (m_rhs / scale2) - (s[m_i] / scale2);
644 
645  if (isZero(z1))
646  z1 = 0.0;
647  if (isZero(z2))
648  z2 = 0.0;
649 
650  Real lo = (aij > 0) ? z1 * scale1 / aij : z2 * scale2 / aij;
651  Real up = (aij > 0) ? z2 * scale2 / aij : z1 * scale1 / aij;
652 
653  if (isZero(lo, eps()))
654  lo = 0.0;
655  if (isZero(up, eps()))
656  up = 0.0;
657 
658  assert(LErel(lo, up));
659  ASSERT_WARN( "WMAISM01", isNotZero(aij) );
660 
661  if (rStatus[m_i] == SPxSolver::ON_LOWER)
662  {
663  if (EQrel(m_lower, m_upper))
664  {
665  x[m_j] = m_lower;
666  cStatus[m_j] = SPxSolver::FIXED;
667  }
668  else if (aij > 0)
669  {
670  x[m_j] = m_upper;
671  cStatus[m_j] = SPxSolver::ON_UPPER;
672  }
673  else if (aij < 0)
674  {
675  x[m_j] = m_lower;
676  cStatus[m_j] = SPxSolver::ON_LOWER;
677  }
678  else
679  throw SPxInternalCodeException("XMAISM01 This should never happen.");
680  }
681  else if (rStatus[m_i] == SPxSolver::ON_UPPER)
682  {
683  if (EQrel(m_lower, m_upper))
684  {
685  x[m_j] = m_lower;
686  cStatus[m_j] = SPxSolver::FIXED;
687  }
688  else if (aij > 0)
689  {
690  x[m_j] = m_lower;
691  cStatus[m_j] = SPxSolver::ON_LOWER;
692  }
693  else if (aij < 0)
694  {
695  x[m_j] = m_upper;
696  cStatus[m_j] = SPxSolver::ON_UPPER;
697  }
698  else
699  throw SPxInternalCodeException("XMAISM02 This should never happen.");
700  }
701  else if (rStatus[m_i] == SPxSolver::FIXED)
702  {
703  assert(EQrel(m_lower, m_upper));
704 
705  x[m_j] = m_lower;
706  cStatus[m_j] = SPxSolver::FIXED;
707  }
708  else if (rStatus[m_i] == SPxSolver::BASIC)
709  {
710  if (GErel(m_lower, lo, eps()) && m_lower > -infinity)
711  {
712  x[m_j] = m_lower;
713  cStatus[m_j] = EQrel(m_lower, m_upper) ? SPxSolver::FIXED : SPxSolver::ON_LOWER;
714  }
715  else if (LErel(m_upper, up, eps()) && m_upper < infinity)
716  {
717  x[m_j] = m_upper;
718  cStatus[m_j] = EQrel(m_lower, m_upper) ? SPxSolver::FIXED : SPxSolver::ON_UPPER;
719  }
720  else if (lo > -infinity)
721  {
722  // make m_i non-basic and m_j basic
723  x[m_j] = lo;
724  cStatus[m_j] = SPxSolver::BASIC;
725  rStatus[m_i] = (aij > 0 ? SPxSolver::ON_LOWER : SPxSolver::ON_UPPER);
726  }
727  else if (up < infinity)
728  {
729  // make m_i non-basic and m_j basic
730  x[m_j] = up;
731  cStatus[m_j] = SPxSolver::BASIC;
732  rStatus[m_i] = (aij > 0 ? SPxSolver::ON_UPPER : SPxSolver::ON_LOWER);
733  }
734  else
735  throw SPxInternalCodeException("XMAISM03 This should never happen.");
736  }
737  else
738  throw SPxInternalCodeException("XMAISM04 This should never happen.");
739 
740  s[m_i] += aij * x[m_j];
741 
742  // dual:
743  r[m_j] = -1.0 * aij * y[m_i];
744 
745  assert(cStatus[m_j] != SPxSolver::BASIC || isZero(r[m_j], eps()));
746 
747 #if CHECK_BASIC_DIM
748  if (!checkBasisDim(rStatus, cStatus))
749  {
750  throw SPxInternalCodeException("XMAISM21 Dimension doesn't match after this step.");
751  }
752 #endif
753 }
754 
757  DataArray<SPxSolver::VarStatus>& rStatus) const
758 {
759 
760  // correcting the change of idx by deletion of the row:
761  s[m_old_i] = s[m_i];
762  y[m_old_i] = y[m_i];
763  rStatus[m_old_i] = rStatus[m_i];
764 
765  // correcting the change of idx by deletion of the column:
766  x[m_old_j] = x[m_j];
767  r[m_old_j] = r[m_j];
768  cStatus[m_old_j] = cStatus[m_j];
769 
770  // primal:
771  Real val = 0.0;
772  Real aij = m_row[m_j];
773 
774  for(int k = 0; k < m_row.size(); ++k)
775  if (m_row.index(k) != m_j)
776  val += m_row.value(k) * x[m_row.index(k)];
777 
778  Real scale = maxAbs(m_lRhs, val);
779 
780  if (scale < 1.0)
781  scale = 1.0;
782 
783  Real z = (m_lRhs / scale) - (val / scale);
784 
785  if (isZero(z))
786  z = 0.0;
787 
788  x[m_j] = z * scale / aij;
789  s[m_i] = m_lRhs;
790 
791  // dual:
792  y[m_i] = m_obj / aij;
793  r[m_j] = 0.0;
794 
795  // basis:
796  cStatus[m_j] = SPxSolver::BASIC;
797 
798  if (m_eqCons)
799  rStatus[m_i] = SPxSolver::FIXED;
800  else if (m_onLhs)
801  rStatus[m_i] = SPxSolver::ON_LOWER;
802  else
803  rStatus[m_i] = SPxSolver::ON_UPPER;
804 
805 #if CHECK_BASIC_DIM
806  if (!checkBasisDim(rStatus, cStatus))
807  {
808  throw SPxInternalCodeException("XMAISM22 Dimension doesn't match after this step.");
809  }
810 #endif
811 }
812 
815  DataArray<SPxSolver::VarStatus>& rStatus) const
816 {
817  // dual:
818  if ((cStatus[m_k] != SPxSolver::BASIC) &&
819  ((cStatus[m_k] == SPxSolver::ON_LOWER && m_strictLo) ||
820  (cStatus[m_k] == SPxSolver::ON_UPPER && m_strictUp) ||
821  (cStatus[m_k] == SPxSolver::FIXED &&
822  (( m_maxSense && ((r[m_j] > 0 && m_strictUp) || (r[m_j] < 0 && m_strictLo))) ||
823  (!m_maxSense && ((r[m_j] > 0 && m_strictLo) || (r[m_j] < 0 && m_strictUp)))))))
824  {
825  Real val = m_kObj;
826  Real aik = m_col[m_i];
827 
828  for(int _k = 0; _k < m_col.size(); ++_k)
829  if (m_col.index(_k) != m_i)
830  val -= m_col.value(_k) * y[m_col.index(_k)];
831 
832  y[m_i] = val / aik;
833  r[m_k] = 0.0;
834 
835  r[m_j] = m_jObj - val * m_aij / aik;
836 
837  ASSERT_WARN( "WMAISM73", isNotZero(m_aij * aik) );
838 
839  // basis:
840  if (cStatus[m_k] == SPxSolver::ON_LOWER)
841  {
842  if (m_jFixed)
843  cStatus[m_j] = SPxSolver::FIXED;
844  else
845  cStatus[m_j] = (m_aij * aik > 0) ? SPxSolver::ON_UPPER : SPxSolver::ON_LOWER;
846  }
847  else if (cStatus[m_k] == SPxSolver::ON_UPPER)
848  {
849  if (m_jFixed)
850  cStatus[m_j] = SPxSolver::FIXED;
851  else
852  cStatus[m_j] = (m_aij * aik > 0) ? SPxSolver::ON_LOWER : SPxSolver::ON_UPPER;
853  }
854  else
855  {
856  if (m_jFixed)
857  cStatus[m_j] = SPxSolver::FIXED;
858  else if (m_strictLo)
859  cStatus[m_j] = (m_aij * aik > 0) ? SPxSolver::ON_UPPER : SPxSolver::ON_LOWER;
860  else
861  cStatus[m_j] = (m_aij * aik > 0) ? SPxSolver::ON_LOWER : SPxSolver::ON_UPPER;
862  }
863 
864  cStatus[m_k] = SPxSolver::BASIC;
865 
866  assert((r[m_j] >= -eps() && cStatus[m_j] == SPxSolver::ON_LOWER)||
867  (r[m_j] <= eps() && cStatus[m_j] == SPxSolver::ON_UPPER ) ||
868  (cStatus[m_j] == SPxSolver::FIXED));
869  }
870 
871 #if CHECK_BASIC_DIM
872  if (!checkBasisDim(rStatus, cStatus))
873  {
874  throw SPxInternalCodeException("XMAISM23 Dimension doesn't match after this step.");
875  }
876 #endif
877 }
878 
881  DataArray<SPxSolver::VarStatus>& rStatus) const
882 {
883  // correcting the change of idx by deletion of the duplicated rows:
884  if(m_isLast)
885  {
886  for(int i = m_perm.size() - 1; i >= 0; --i)
887  {
888  if (m_perm[i] >= 0)
889  {
890  int rIdx_new = m_perm[i];
891  int rIdx = i;
892  s[rIdx] = s[rIdx_new];
893  y[rIdx] = y[rIdx_new];
894  rStatus[rIdx] = rStatus[rIdx_new];
895  }
896  }
897  }
898 
899  // primal:
900  for(int k = 0; k < m_scale.size(); ++k)
901  if (m_scale.index(k) != m_i)
902  s[m_scale.index(k)] = s[m_i] / m_scale.value(k);
903 
904  // dual & basis:
905  bool haveSetBasis = false;
906 
907  for(int k = 0; k < m_scale.size(); ++k)
908  {
909  int i = m_scale.index(k);
910 
911  if (rStatus[m_i] == SPxSolver::BASIC || (haveSetBasis && i!=m_i))
912  // if the row with tightest lower and upper bound in the basic, every duplicate row should in basic
913  // or basis status of row m_i has been set, this row should be in basis
914  {
915  y[i] = 0.0;
916  rStatus[i] = SPxSolver::BASIC;
917  continue;
918  }
919 
920  ASSERT_WARN( "WMAISM02", isNotZero(m_scale.value(k)) );
921 
922  if (rStatus[m_i] == SPxSolver::FIXED && (i == m_maxLhsIdx || i == m_minRhsIdx))
923  {
924  // this row leads to the tightest lower or upper bound, slack should not be in the basis
925  y[i] = y[m_i] * m_scale.value(k);
926  y[m_i] = 0.0;
927 
928  if(m_isLhsEqualRhs[k])
929  {
930  rStatus[i] = SPxSolver::FIXED;
931  }
932  else if(i == m_maxLhsIdx)
933  {
934  rStatus[i] = m_scale.value(k)*m_scale.value(0) > 0 ? SPxSolver::ON_LOWER : SPxSolver::ON_UPPER;
935  }
936  else
937  {
938  assert(i == m_minRhsIdx);
939 
940  rStatus[i] = m_scale.value(k)*m_scale.value(0) > 0 ? SPxSolver::ON_UPPER : SPxSolver::ON_LOWER;
941  }
942  if (i != m_i)
943  rStatus[m_i] = SPxSolver::BASIC;
944  haveSetBasis = true;
945  }
946  else if (i == m_maxLhsIdx && rStatus[m_i] == SPxSolver::ON_LOWER)
947  {
948  // this row leads to the tightest lower bound, slack should not be in the basis
949  y[i] = y[m_i] * m_scale.value(k);
950  y[m_i] = 0.0;
951 
952  rStatus[i] = m_scale.value(k)*m_scale.value(0) > 0 ? SPxSolver::ON_LOWER : SPxSolver::ON_UPPER;
953  if (i != m_i)
954  rStatus[m_i] = SPxSolver::BASIC;
955  haveSetBasis = true;
956  }
957  else if (i == m_minRhsIdx && rStatus[m_i] == SPxSolver::ON_UPPER)
958  {
959  // this row leads to the tightest upper bound, slack should not be in the basis
960  y[i] = y[m_i] * m_scale.value(k);
961  y[m_i] = 0.0;
962 
963  rStatus[i] = m_scale.value(k)*m_scale.value(0) > 0 ? SPxSolver::ON_UPPER : SPxSolver::ON_LOWER;
964  if (i != m_i)
965  rStatus[m_i] = SPxSolver::BASIC;
966  haveSetBasis = true;
967  }
968  else if (i != m_i)
969  {
970  // this row does not lead to the tightest lower or upper bound, slack should be in the basis
971  y[i] = 0.0;
972  rStatus[i] = SPxSolver::BASIC;
973  }
974  }
975 
976 #if CHECK_BASIC_DIM
977  if(m_isFirst && !checkBasisDim(rStatus, cStatus))
978  {
979  throw SPxInternalCodeException("XMAISM24 Dimension doesn't match after this step.");
980  }
981 #endif
982 
983  // nothing to do for the reduced cost values
984 }
985 
987  DVector&,
988  DVector&,
989  DVector& r,
991  DataArray<SPxSolver::VarStatus>& rStatus) const
992 {
993 
994  if(m_isFirst)
995  {
996 #if CHECK_BASIC_DIM
997  if (!checkBasisDim(rStatus, cStatus))
998  {
999  throw SPxInternalCodeException("XMAISM25 Dimension doesn't match after this step.");
1000  }
1001 #endif
1002  return;
1003  }
1004 
1005 
1006  // correcting the change of idx by deletion of the columns:
1007  if(m_isLast)
1008  {
1009  for(int i = m_perm.size() - 1; i >= 0; --i)
1010  {
1011  if (m_perm[i] >= 0)
1012  {
1013  int cIdx_new = m_perm[i];
1014  int cIdx = i;
1015  x[cIdx] = x[cIdx_new];
1016  r[cIdx] = r[cIdx_new];
1017  cStatus[cIdx] = cStatus[cIdx_new];
1018  }
1019  }
1020  return;
1021  }
1022 
1023  // primal & basis:
1024  ASSERT_WARN( "WMAISM03", isNotZero(m_scale) );
1025 
1026  if (cStatus[m_k] == SPxSolver::ON_LOWER)
1027  {
1028  x[m_k] = m_loK;
1029 
1030  if (m_scale > 0)
1031  {
1032  x[m_j] = m_loJ;
1033  cStatus[m_j] = EQrel(m_loJ, m_upJ) ? SPxSolver::FIXED : SPxSolver::ON_LOWER;
1034  }
1035  else
1036  {
1037  x[m_j] = m_upJ;
1038  cStatus[m_j] = EQrel(m_loJ, m_upJ) ? SPxSolver::FIXED : SPxSolver::ON_UPPER;
1039  }
1040  }
1041  else if (cStatus[m_k] == SPxSolver::ON_UPPER)
1042  {
1043  x[m_k] = m_upK;
1044 
1045  if (m_scale > 0)
1046  {
1047  x[m_j] = m_upJ;
1048  cStatus[m_j] = EQrel(m_loJ, m_upJ) ? SPxSolver::FIXED : SPxSolver::ON_UPPER;
1049  }
1050  else
1051  {
1052  x[m_j] = m_loJ;
1053  cStatus[m_j] = EQrel(m_loJ, m_upJ) ? SPxSolver::FIXED : SPxSolver::ON_LOWER;
1054  }
1055  }
1056  else if (cStatus[m_k] == SPxSolver::FIXED)
1057  {
1058  // => x[m_k] and x[m_j] are also fixed before the corresponding preprocessing step
1059  x[m_j] = m_loJ;
1060  cStatus[m_j] = SPxSolver::FIXED;
1061  }
1062  else if (cStatus[m_k] == SPxSolver::ZERO)
1063  {
1064  /* we only aggregate duplicate columns if 0 is contained in their bounds, so we can handle this case properly */
1065  assert(x[m_k] == 0.0);
1066  assert(LErel(m_loJ, 0.0));
1067  assert(GErel(m_upJ, 0.0));
1068  assert(LErel(m_loK, 0.0));
1069  assert(GErel(m_upK, 0.0));
1070 
1071  if (isZero(m_loK) && isZero(m_upK))
1072  cStatus[m_k] = SPxSolver::FIXED;
1073  else if (isZero(m_loK))
1074  cStatus[m_k] = SPxSolver::ON_LOWER;
1075  else if (isZero(m_upK))
1076  cStatus[m_k] = SPxSolver::ON_UPPER;
1077  else if (LErel(m_loK, 0.0) && GErel(m_upK, 0.0))
1078  cStatus[m_k] = SPxSolver::ZERO;
1079  else
1080  throw SPxInternalCodeException("XMAISM05 This should never happen.");
1081 
1082  x[m_j] = 0.0;
1083  if (isZero(m_loJ) && isZero(m_upJ))
1084  cStatus[m_j] = SPxSolver::FIXED;
1085  else if (isZero(m_loJ))
1086  cStatus[m_j] = SPxSolver::ON_LOWER;
1087  else if (isZero(m_upJ))
1088  cStatus[m_j] = SPxSolver::ON_UPPER;
1089  else if (LErel(m_loJ, 0.0) && GErel(m_upJ, 0.0))
1090  cStatus[m_j] = SPxSolver::ZERO;
1091  else
1092  throw SPxInternalCodeException("XMAISM06 This should never happen.");
1093  }
1094  else if (cStatus[m_k] == SPxSolver::BASIC)
1095  {
1096  Real scale1 = maxAbs(x[m_k], m_loK);
1097  Real scale2 = maxAbs(x[m_k], m_upK);
1098 
1099  if (scale1 < 1.0)
1100  scale1 = 1.0;
1101  if (scale2 < 1.0)
1102  scale2 = 1.0;
1103 
1104  Real z1 = (x[m_k] / scale1) - (m_loK / scale1);
1105  Real z2 = (x[m_k] / scale2) - (m_upK / scale2);
1106 
1107  if (isZero(z1))
1108  z1 = 0.0;
1109  if (isZero(z2))
1110  z2 = 0.0;
1111 
1112  if( m_loJ <= -infinity && m_upJ >= infinity && m_loK <= -infinity && m_upK >= infinity )
1113  {
1114  cStatus[m_j] = SPxSolver::ZERO;
1115  x[m_j] = 0.0;
1116  }
1117  else if( m_scale > 0.0 )
1118  {
1119  if( GErel(x[m_k], m_upK + m_scale * m_upJ) )
1120  {
1121  assert(m_upJ < infinity);
1122  cStatus[m_j] = EQrel(m_loJ, m_upJ) ? SPxSolver::FIXED : SPxSolver::ON_UPPER;
1123  x[m_j] = m_upJ;
1124  x[m_k] -= m_scale * x[m_j];
1125  }
1126  else if( GErel(x[m_k], m_loK + m_scale * m_upJ) && m_upJ < infinity )
1127  {
1128  cStatus[m_j] = EQrel(m_loJ, m_upJ) ? SPxSolver::FIXED : SPxSolver::ON_UPPER;
1129  x[m_j] = m_upJ;
1130  x[m_k] -= m_scale * x[m_j];
1131  }
1132  else if( GErel(x[m_k], m_upK + m_scale * m_loJ) && m_upK < infinity )
1133  {
1134  cStatus[m_k] = EQrel(m_loK, m_upK) ? SPxSolver::FIXED : SPxSolver::ON_UPPER;
1135  x[m_k] = m_upK;
1136  cStatus[m_j] = SPxSolver::BASIC;
1137  x[m_j] = z2 * scale2 / m_scale;
1138  }
1139  else if( GErel(x[m_k], m_loK + m_scale * m_loJ) && m_loJ > -infinity )
1140  {
1141  cStatus[m_j] = EQrel(m_loJ, m_upJ) ? SPxSolver::FIXED : SPxSolver::ON_LOWER;
1142  x[m_j] = m_loJ;
1143  x[m_k] -= m_scale * x[m_j];
1144  }
1145  else if( GErel(x[m_k], m_loK + m_scale * m_loJ) && m_loK > -infinity )
1146  {
1147  cStatus[m_k] = EQrel(m_loK, m_upK) ? SPxSolver::FIXED : SPxSolver::ON_LOWER;
1148  x[m_k] = m_loK;
1149  cStatus[m_j] = SPxSolver::BASIC;
1150  x[m_j] = z1 * scale1 / m_scale;
1151  }
1152  else if( LTrel(x[m_k], m_loK + m_scale * m_loJ) )
1153  {
1154  assert(m_loJ > -infinity);
1155  cStatus[m_j] = EQrel(m_loJ, m_upJ) ? SPxSolver::FIXED : SPxSolver::ON_LOWER;
1156  x[m_j] = m_loJ;
1157  x[m_k] -= m_scale * x[m_j];
1158  }
1159  else
1160  {
1161  throw SPxInternalCodeException("XMAISM08 This should never happen.");
1162  }
1163  }
1164  else
1165  {
1166  assert(m_scale < 0.0);
1167 
1168  if( GErel(x[m_k], m_upK + m_scale * m_loJ) )
1169  {
1170  assert(m_loJ > -infinity);
1171  cStatus[m_j] = EQrel(m_loJ, m_upJ) ? SPxSolver::FIXED : SPxSolver::ON_LOWER;
1172  x[m_j] = m_loJ;
1173  x[m_k] -= m_scale * x[m_j];
1174  }
1175  else if( GErel(x[m_k], m_loK + m_scale * m_loJ) && m_loJ > -infinity )
1176  {
1177  cStatus[m_j] = EQrel(m_loJ, m_upJ) ? SPxSolver::FIXED : SPxSolver::ON_LOWER;
1178  x[m_j] = m_loJ;
1179  x[m_k] -= m_scale * x[m_j];
1180  }
1181  else if( GErel(x[m_k], m_upK + m_scale * m_upJ) && m_upK < infinity )
1182  {
1183  cStatus[m_k] = EQrel(m_loK, m_upK) ? SPxSolver::FIXED : SPxSolver::ON_UPPER;
1184  x[m_k] = m_upK;
1185  cStatus[m_j] = SPxSolver::BASIC;
1186  x[m_j] = z2 * scale2 / m_scale;
1187  }
1188  else if( GErel(x[m_k], m_loK + m_scale * m_upJ) && m_upJ < infinity )
1189  {
1190  cStatus[m_j] = EQrel(m_loJ, m_upJ) ? SPxSolver::FIXED : SPxSolver::ON_UPPER;
1191  x[m_j] = m_upJ;
1192  x[m_k] -= m_scale * x[m_j];
1193  }
1194  else if( GErel(x[m_k], m_loK + m_scale * m_upJ) && m_loK > -infinity )
1195  {
1196  cStatus[m_k] = EQrel(m_loK, m_upK) ? SPxSolver::FIXED : SPxSolver::ON_LOWER;
1197  x[m_k] = m_loK;
1198  cStatus[m_j] = SPxSolver::BASIC;
1199  x[m_j] = z1 * scale1 / m_scale;
1200  }
1201  else if( LTrel(x[m_k], m_loK + m_scale * m_upJ) )
1202  {
1203  assert(m_upJ < infinity);
1204  cStatus[m_j] = EQrel(m_loJ, m_upJ) ? SPxSolver::FIXED : SPxSolver::ON_UPPER;
1205  x[m_j] = m_upJ;
1206  x[m_k] -= m_scale * x[m_j];
1207  }
1208  else
1209  {
1210  throw SPxInternalCodeException("XMAISM09 This should never happen.");
1211  }
1212  }
1213  }
1214 
1215  // dual:
1216  r[m_j] = m_scale * r[m_k];
1217 }
1218 
1220 {
1221  METHOD( "SPxMainSM::handleExtremes" );
1222 
1223  // This method handles extreme value of the given LP by
1224  //
1225  // 1. setting numbers of very small absolute values to zero and
1226  // 2. setting numbers of very large absolute values to -infinity or +infinity, respectively.
1227 
1228  Real maxVal = infinity / 5.0;
1229  int remRows = 0;
1230  int remNzos = 0;
1231  int chgBnds = 0;
1232  int chgLRhs = 0;
1233  int objCnt = 0;
1234 
1235  for(int i = lp.nRows()-1; i >= 0; --i)
1236  {
1237  // lhs
1238  Real lhs = lp.lhs(i);
1239 
1240  if (lhs != 0.0 && isZero(lhs, epsZero()))
1241  {
1242  lp.changeLhs(i, 0.0);
1243  ++chgLRhs;
1244  }
1245  else if (lhs > -infinity && lhs < -maxVal)
1246  {
1247  lp.changeLhs(i, -infinity);
1248  ++chgLRhs;
1249  }
1250  else if (lhs < infinity && lhs > maxVal)
1251  {
1252  lp.changeLhs(i, infinity);
1253  ++chgLRhs;
1254  }
1255 
1256  // rhs
1257  Real rhs = lp.rhs(i);
1258 
1259  if (rhs != 0.0 && isZero(rhs, epsZero()))
1260  {
1261  lp.changeRhs(i, 0.0);
1262  ++chgLRhs;
1263  }
1264  else if (rhs > -infinity && rhs < -maxVal)
1265  {
1266  lp.changeRhs(i, -infinity);
1267  ++chgLRhs;
1268  }
1269  else if (rhs < infinity && rhs > maxVal)
1270  {
1271  lp.changeRhs(i, infinity);
1272  ++chgLRhs;
1273  }
1274 
1275  if (lp.lhs(i) <= -infinity && lp.rhs(i) >= infinity)
1276  {
1277  m_hist.append(new FreeConstraintPS(lp, i));
1278 
1279  removeRow(lp, i);
1280  ++remRows;
1281 
1282  ++m_stat[FREE_ROW];
1283  }
1284  }
1285 
1286  for(int j = 0; j < lp.nCols(); ++j)
1287  {
1288  // lower bound
1289  Real lo = lp.lower(j);
1290 
1291  if (lo != 0.0 && isZero(lo, epsZero()))
1292  {
1293  lp.changeLower(j, 0.0);
1294  ++chgBnds;
1295  }
1296  else if (lo > -infinity && lo < -maxVal)
1297  {
1298  lp.changeLower(j, -infinity);
1299  ++chgBnds;
1300  }
1301  else if (lo < infinity && lo > maxVal)
1302  {
1303  lp.changeLower(j, infinity);
1304  ++chgBnds;
1305  }
1306 
1307  // upper bound
1308  Real up = lp.upper(j);
1309 
1310  if (up != 0.0 && isZero(up, epsZero()))
1311  {
1312  lp.changeUpper(j, 0.0);
1313  ++chgBnds;
1314  }
1315  else if (up > -infinity && up < -maxVal)
1316  {
1317  lp.changeUpper(j, -infinity);
1318  ++chgBnds;
1319  }
1320  else if (up < infinity && up > maxVal)
1321  {
1322  lp.changeUpper(j, infinity);
1323  ++chgBnds;
1324  }
1325 
1326  // fixed columns will be eliminated later
1327  if (NE(lo, up))
1328  {
1329  lo = fabs(lo);
1330  up = fabs(up);
1331 
1332  Real absBnd = (lo > up) ? lo : up;
1333 
1334  if (absBnd < 1.0)
1335  absBnd = 1.0;
1336 
1337  // non-zeros
1338  SVector& col = lp.colVector_w(j);
1339  int i = 0;
1340 
1341  while(i < col.size())
1342  {
1343  Real aij = fabs(col.value(i));
1344 
1345  if (isZero(aij, epsZero()) || isZero(aij * absBnd, feastol()))
1346  {
1347  SVector& row = lp.rowVector_w(col.index(i));
1348 
1349  // this changes col.size()
1350  row.remove(row.number(j));
1351  col.remove(i);
1352 
1353  MSG_INFO3( spxout << "IMAISM04 aij=" << aij
1354  << " removed, absBnd=" << absBnd
1355  << std::endl; )
1356  ++remNzos;
1357  }
1358  else
1359  {
1360  if (aij > maxVal)
1361  MSG_WARNING( spxout << "WMAISM05 Warning! Big value " << aij << std::endl; )
1362 
1363  ++i;
1364  }
1365  }
1366  }
1367 
1368  // objective
1369  Real obj = lp.obj(j);
1370 
1371  if (obj != 0.0 && isZero(obj, epsZero()))
1372  {
1373  lp.changeObj(j, 0.0);
1374  ++objCnt;
1375  }
1376  else if (obj > -infinity && obj < -maxVal)
1377  {
1378  lp.changeObj(j, -infinity);
1379  ++objCnt;
1380  }
1381  else if (obj < infinity && obj > maxVal)
1382  {
1383  lp.changeObj(j, infinity);
1384  ++objCnt;
1385  }
1386  }
1387 
1388  if (remRows + remNzos + chgLRhs + chgBnds + objCnt > 0)
1389  {
1390  m_remRows += remRows;
1391  m_remNzos += remNzos;
1392  m_chgLRhs += chgLRhs;
1393  m_chgBnds += chgBnds;
1394 
1395  MSG_INFO2( spxout << "IMAISM06 Main simplifier (extremes) removed "
1396  << remRows << " rows, "
1397  << remNzos << " non-zeros, "
1398  << chgBnds << " col bounds, "
1399  << chgLRhs << " row bounds, "
1400  << objCnt << " objective coefficients" << std::endl; )
1401  }
1402  assert(lp.isConsistent());
1403 }
1404 
1406 {
1407  METHOD( "SPxMainSM::removeEmpty" );
1408 
1409  // This method removes empty rows and columns from the LP.
1410 
1411  int remRows = 0;
1412  int remCols = 0;
1413 
1414  for(int i = lp.nRows()-1; i >= 0; --i)
1415  {
1416  const SVector& row = lp.rowVector(i);
1417 
1418  if (row.size() == 0)
1419  {
1420  MSG_INFO3( spxout << "IMAISM07 row " << i
1421  << ": empty ->"; )
1422 
1423  if (LT(lp.rhs(i), 0.0, feastol()) || GT(lp.lhs(i), 0.0, feastol()))
1424  {
1425  MSG_INFO3( spxout << " infeasible lhs=" << lp.lhs(i)
1426  << " rhs=" << lp.rhs(i) << std::endl; )
1427  return INFEASIBLE;
1428  }
1429  MSG_INFO3( spxout << " removed" << std::endl; )
1430 
1431  m_hist.append(new EmptyConstraintPS(lp, i));
1432 
1433  ++remRows;
1434  removeRow(lp, i);
1435 
1436  ++m_stat[EMPTY_ROW];
1437  }
1438  }
1439 
1440  for(int j = lp.nCols()-1; j >= 0; --j)
1441  {
1442  const SVector& col = lp.colVector(j);
1443 
1444  if (col.size() == 0)
1445  {
1446  MSG_INFO3( spxout << "IMAISM08 col " << j
1447  << ": empty -> maxObj=" << lp.maxObj(j)
1448  << " lower=" << lp.lower(j)
1449  << " upper=" << lp.upper(j); )
1450 
1451  Real val;
1452 
1453  if (GT(lp.maxObj(j), 0.0, epsZero()))
1454  {
1455  if (lp.upper(j) >= infinity)
1456  {
1457  MSG_INFO3( spxout << " unbounded" << std::endl; )
1458  return UNBOUNDED;
1459  }
1460  val = lp.upper(j);
1461  }
1462  else if (LT(lp.maxObj(j), 0.0, epsZero()))
1463  {
1464  if (lp.lower(j) <= -infinity)
1465  {
1466  MSG_INFO3( spxout << " unbounded" << std::endl; )
1467  return UNBOUNDED;
1468  }
1469  val = lp.lower(j);
1470  }
1471  else
1472  {
1473  ASSERT_WARN( "WMAISM09", isZero(lp.maxObj(j), epsZero()) );
1474  // any value within the bounds is ok
1475  if (lp.lower(j) > -infinity)
1476  val = lp.lower(j);
1477  else if (lp.upper(j) < infinity)
1478  val = lp.upper(j);
1479  else
1480  val = 0.0;
1481  }
1482  MSG_INFO3( spxout << " removed" << std::endl; )
1483 
1484  m_hist.append(new FixBoundsPS(lp, j, val));
1485  m_hist.append(new FixVariablePS(lp, *this, j, val));
1486 
1487  ++remCols;
1488  removeCol(lp, j);
1489 
1490  ++m_stat[EMPTY_COL];
1491  }
1492  }
1493 
1494  if (remRows + remCols > 0)
1495  {
1496  m_remRows += remRows;
1497  m_remCols += remCols;
1498 
1499  MSG_INFO2( spxout << "IMAISM10 Main simplifier (empty rows/colums) removed "
1500  << remRows << " rows, "
1501  << remCols << " cols"
1502  << std::endl; )
1503 
1504  }
1505  return OKAY;
1506 }
1507 
1509 {
1510  assert(row.size() == 1);
1511 
1512  Real aij = row.value(0);
1513  int j = row.index(0);
1514  Real lo = -infinity;
1515  Real up = infinity;
1516 
1517  MSG_INFO3( spxout << "IMAISM22 row " << i
1518  << ": singleton -> val=" << aij
1519  << " lhs=" << lp.lhs(i)
1520  << " rhs=" << lp.rhs(i); )
1521 
1522  if (GT(aij, 0.0, epsZero())) // aij > 0
1523  {
1524  lo = (lp.lhs(i) <= -infinity) ? -infinity : lp.lhs(i) / aij;
1525  up = (lp.rhs(i) >= infinity) ? infinity : lp.rhs(i) / aij;
1526  }
1527  else if (LT(aij, 0.0, epsZero())) // aij < 0
1528  {
1529  lo = (lp.rhs(i) >= infinity) ? -infinity : lp.rhs(i) / aij;
1530  up = (lp.lhs(i) <= -infinity) ? infinity : lp.lhs(i) / aij;
1531  }
1532  else if (LT(lp.rhs(i), 0.0, feastol()) || GT(lp.lhs(i), 0.0, feastol()))
1533  {
1534  // aij == 0, rhs < 0 or lhs > 0
1535  MSG_INFO3( spxout << " infeasible" << std::endl; )
1536  return INFEASIBLE;
1537  }
1538 
1539  if (isZero(lo, epsZero()))
1540  lo = 0.0;
1541 
1542  if (isZero(up, epsZero()))
1543  up = 0.0;
1544 
1545  MSG_INFO3( spxout << " removed, lower=" << lo
1546  << " (" << lp.lower(j)
1547  << ") upper=" << up
1548  << " (" << lp.upper(j)
1549  << ")" << std::endl; )
1550 
1551  bool stricterUp = false;
1552  bool stricterLo = false;
1553 
1554  Real oldLo = lp.lower(j);
1555  Real oldUp = lp.upper(j);
1556 
1557  if (LTrel(up, lp.upper(j), feastol()))
1558  {
1559  lp.changeUpper(j, up);
1560  stricterUp = true;
1561  }
1562  if (GTrel(lo, lp.lower(j), feastol()))
1563  {
1564  lp.changeLower(j, lo);
1565  stricterLo = true;
1566  }
1567 
1568  m_hist.append(new RowSingletonPS(lp, i, j, stricterLo, stricterUp, lp.lower(j), lp.upper(j), oldLo, oldUp));
1569 
1570  removeRow(lp, i);
1571 
1572  m_remRows++;
1573  m_remNzos++;
1574  ++m_stat[SINGLETON_ROW];
1575 
1576  return OKAY;
1577 }
1578 
1580 {
1581  METHOD( "SPxMainSM::simplifyRows" );
1582 
1583  // This method simplifies the rows of the LP.
1584  //
1585  // The following operations are done:
1586  // 1. detect implied free variables
1587  // 2. detect implied free constraints
1588  // 3. detect infeasible constraints
1589  // 4. remove unconstrained constraints
1590  // 5. remove empty constraints
1591  // 6. remove row singletons and tighten the corresponding variable bounds if necessary
1592  // 7. detect forcing rows and fix the corresponding variables
1593 
1594  int remRows = 0;
1595  int remNzos = 0;
1596  int chgLRhs = 0;
1597  int chgBnds = 0;
1598 
1599  for(int i = lp.nRows()-1; i >= 0; --i)
1600  {
1601  const SVector& row = lp.rowVector(i);
1602 
1603  // compute bounds on constraint value
1604  Real lhsBnd = 0.0; // minimal activity (finite summands)
1605  Real rhsBnd = 0.0; // maximal activity (finite summands)
1606  int lhsCnt = 0; // number of -infinity summands in minimal activity
1607  int rhsCnt = 0; // number of +infinity summands in maximal activity
1608 
1609  for(int k = 0; k < row.size(); ++k)
1610  {
1611  Real aij = row.value(k);
1612  int j = row.index(k);
1613 
1614  ASSERT_WARN( "WMAISM11", isNotZero(aij) );
1615 
1616  if (aij > 0.0)
1617  {
1618  if (lp.lower(j) <= -infinity)
1619  ++lhsCnt;
1620  else
1621  lhsBnd += aij * lp.lower(j);
1622 
1623  if (lp.upper(j) >= infinity)
1624  ++rhsCnt;
1625  else
1626  rhsBnd += aij * lp.upper(j);
1627  }
1628  else if (aij < 0.0)
1629  {
1630  if (lp.lower(j) <= -infinity)
1631  ++rhsCnt;
1632  else
1633  rhsBnd += aij * lp.lower(j);
1634 
1635  if (lp.upper(j) >= infinity)
1636  ++lhsCnt;
1637  else
1638  lhsBnd += aij * lp.upper(j);
1639  }
1640  }
1641 
1642 #if FREE_BOUNDS
1643  // 1. detect implied free variables
1644  if (rhsCnt <= 1 || lhsCnt <= 1)
1645  {
1646  for(int k = 0; k < row.size(); ++k)
1647  {
1648  Real aij = row.value(k);
1649  int j = row.index(k);
1650 
1651  ASSERT_WARN( "WMAISM12", isNotZero(aij) );
1652 
1653  if (aij > 0.0)
1654  {
1655  if (lp.lhs(i) > -infinity && lp.lower(j) > -infinity && rhsCnt <= 1 && NErel(lp.lhs(i), rhsBnd, feastol())
1656  // do not perform if strongly different orders of magnitude occur
1657  && fabs(lp.lhs(i) / rhsBnd) > Param::epsilon())
1658  {
1659  Real lo = -infinity;
1660  Real scale = maxAbs(lp.lhs(i), rhsBnd);
1661 
1662  if (scale < 1.0)
1663  scale = 1.0;
1664 
1665  Real z = (lp.lhs(i) / scale) - (rhsBnd / scale);
1666 
1667  if (isZero(z, epsZero()))
1668  z = 0.0;
1669 
1670  assert(rhsCnt > 0 || lp.upper(j) < infinity);
1671 
1672  if (rhsCnt == 0)
1673  lo = lp.upper(j) + z * scale / aij;
1674  else if (lp.upper(j) >= infinity)
1675  lo = z * scale / aij;
1676 
1677  if (isZero(lo, epsZero()))
1678  lo = 0.0;
1679 
1680  if (GErel(lo, lp.lower(j), feastol()))
1681  {
1682  MSG_INFO3( spxout << "IMAISM13 row " << i
1683  << ": redundant lower bound on x" << j
1684  << " -> lower=" << lo
1685  << " (" << lp.lower(j)
1686  << ")" << std::endl; )
1687 
1688  ++lhsCnt;
1689  lhsBnd -= aij * lp.lower(j);
1690 
1691  lp.changeLower(j, -infinity);
1692  ++chgBnds;
1693  }
1694  }
1695  if (lp.rhs(i) < infinity && lp.upper(j) < infinity && lhsCnt <= 1 && NErel(lp.rhs(i), lhsBnd, feastol())
1696  // do not perform if strongly different orders of magnitude occur
1697  && fabs(lp.rhs(i) / lhsBnd) > Param::epsilon())
1698  {
1699  Real up = infinity;
1700  Real scale = maxAbs(lp.rhs(i), lhsBnd);
1701 
1702  if (scale < 1.0)
1703  scale = 1.0;
1704 
1705  Real z = (lp.rhs(i) / scale) - (lhsBnd / scale);
1706 
1707  if (isZero(z, epsZero()))
1708  z = 0.0;
1709 
1710  assert(lhsCnt > 0 || lp.lower(j) > -infinity);
1711 
1712  if (lhsCnt == 0)
1713  up = lp.lower(j) + z * scale / aij;
1714  else if (lp.lower(j) <= -infinity)
1715  up = z * scale / aij;
1716 
1717  if (isZero(up, epsZero()))
1718  up = 0.0;
1719 
1720  if (LErel(up, lp.upper(j), feastol()))
1721  {
1722  MSG_INFO3( spxout << "IMAISM14 row " << i
1723  << ": redundant upper bound on x" << j
1724  << " -> upper=" << up
1725  << " (" << lp.upper(j)
1726  << ")" << std::endl; )
1727 
1728  ++rhsCnt;
1729  rhsBnd -= aij * lp.upper(j);
1730 
1731  lp.changeUpper(j, infinity);
1732  ++chgBnds;
1733  }
1734  }
1735  }
1736  else if (aij < 0.0)
1737  {
1738  if (lp.lhs(i) > -infinity && lp.upper(j) < infinity && rhsCnt <= 1 && NErel(lp.lhs(i), rhsBnd, feastol())
1739  // do not perform if strongly different orders of magnitude occur
1740  && fabs(lp.lhs(i) / rhsBnd) > Param::epsilon())
1741  {
1742  Real up = infinity;
1743  Real scale = maxAbs(lp.lhs(i), rhsBnd);
1744 
1745  if (scale < 1.0)
1746  scale = 1.0;
1747 
1748  Real z = (lp.lhs(i) / scale) - (rhsBnd / scale);
1749 
1750  if (isZero(z, epsZero()))
1751  z = 0.0;
1752 
1753  assert(rhsCnt > 0 || lp.lower(j) > -infinity);
1754 
1755  if (rhsCnt == 0)
1756  up = lp.lower(j) + z * scale / aij;
1757  else if (lp.lower(j) <= -infinity)
1758  up = z * scale / aij;
1759 
1760  if (isZero(up, epsZero()))
1761  up = 0.0;
1762 
1763  if (LErel(up, lp.upper(j), feastol()))
1764  {
1765  MSG_INFO3( spxout << "IMAISM15 row " << i
1766  << ": redundant upper bound on x" << j
1767  << " -> upper=" << up
1768  << " (" << lp.upper(j)
1769  << ")" << std::endl; )
1770 
1771  ++lhsCnt;
1772  lhsBnd -= aij * lp.upper(j);
1773 
1774  lp.changeUpper(j, infinity);
1775  ++chgBnds;
1776  }
1777  }
1778  if (lp.rhs(i) < infinity && lp.lower(j) > -infinity && lhsCnt <= 1 && NErel(lp.rhs(i), lhsBnd, feastol())
1779  // do not perform if strongly different orders of magnitude occur
1780  && fabs(lp.rhs(i) / lhsBnd) > Param::epsilon())
1781  {
1782  Real lo = -infinity;
1783  Real scale = maxAbs(lp.rhs(i), lhsBnd);
1784 
1785  if (scale < 1.0)
1786  scale = 1.0;
1787 
1788  Real z = (lp.rhs(i) / scale) - (lhsBnd / scale);
1789 
1790  if (isZero(z, epsZero()))
1791  z = 0.0;
1792 
1793  assert(lhsCnt > 0 || lp.upper(j) < infinity);
1794 
1795  if (lhsCnt == 0)
1796  lo = lp.upper(j) + z * scale / aij;
1797  else if (lp.upper(j) >= infinity)
1798  lo = z * scale / aij;
1799 
1800  if (isZero(lo, epsZero()))
1801  lo = 0.0;
1802 
1803  if (GErel(lo, lp.lower(j)))
1804  {
1805  MSG_INFO3( spxout << "IMAISM16 row " << i
1806  << ": redundant lower bound on x" << j
1807  << " -> lower=" << lo
1808  << " (" << lp.lower(j)
1809  << ")" << std::endl; )
1810 
1811  ++rhsCnt;
1812  rhsBnd -= aij * lp.lower(j);
1813 
1814  lp.changeLower(j, -infinity);
1815  ++chgBnds;
1816  }
1817  }
1818  }
1819  }
1820  }
1821 #endif
1822 
1823 #if FREE_LHS_RHS
1824  // 2. detect implied free constraints
1825  if (lp.lhs(i) > -infinity && lhsCnt == 0 && GErel(lhsBnd, lp.lhs(i), feastol()))
1826  {
1827  MSG_INFO3( spxout << "IMAISM17 row " << i
1828  << ": redundant lhs -> lhsBnd=" << lhsBnd
1829  << " lhs=" << lp.lhs(i)
1830  << std::endl; )
1831 
1832  lp.changeLhs(i, -infinity);
1833  ++chgLRhs;
1834  }
1835  if (lp.rhs(i) < infinity && rhsCnt == 0 && LErel(rhsBnd, lp.rhs(i), feastol()))
1836  {
1837  MSG_INFO3( spxout << "IMAISM18 row " << i
1838  << ": redundant rhs -> rhsBnd=" << rhsBnd
1839  << " rhs=" << lp.rhs(i)
1840  << std::endl; )
1841 
1842  lp.changeRhs(i, infinity);
1843  ++chgLRhs;
1844  }
1845 #endif
1846 
1847  // 3. infeasible constraint
1848  if (LTrel(lp.rhs(i), lp.lhs(i), feastol()) ||
1849  (LTrel(rhsBnd, lp.lhs(i), feastol()) && rhsCnt == 0) ||
1850  (GTrel(lhsBnd, lp.rhs(i), feastol()) && lhsCnt == 0))
1851  {
1852  MSG_INFO3( spxout << "IMAISM19 row " << std::setprecision(20) << i
1853  << ": infeasible -> lhs=" << lp.lhs(i)
1854  << " rhs=" << lp.rhs(i)
1855  << " lhsBnd=" << lhsBnd
1856  << " rhsBnd=" << rhsBnd
1857  << std::endl; )
1858  return INFEASIBLE;
1859  }
1860 
1861 #if FREE_CONSTRAINT
1862  // 4. unconstrained constraint
1863  if (lp.lhs(i) <= -infinity && lp.rhs(i) >= infinity)
1864  {
1865  MSG_INFO3( spxout << "IMAISM20 row " << i
1866  << ": unconstrained -> removed" << std::endl; )
1867 
1868  m_hist.append(new FreeConstraintPS(lp, i));
1869 
1870  ++remRows;
1871  remNzos += row.size();
1872  removeRow(lp, i);
1873 
1874  ++m_stat[FREE_ROW];
1875 
1876  continue;
1877  }
1878 #endif
1879 
1880 #if EMPTY_CONSTRAINT
1881  // 5. empty constraint
1882  if (row.size() == 0)
1883  {
1884  MSG_INFO3( spxout << "IMAISM21 row " << i
1885  << ": empty ->"; )
1886 
1887  if (LT(lp.rhs(i), 0.0, feastol()) || GT(lp.lhs(i), 0.0, feastol()))
1888  {
1889  MSG_INFO3( spxout << " infeasible lhs=" << lp.lhs(i)
1890  << " rhs=" << lp.rhs(i) << std::endl; )
1891  return INFEASIBLE;
1892  }
1893  MSG_INFO3( spxout << " removed" << std::endl; )
1894 
1895  m_hist.append(new EmptyConstraintPS(lp, i));
1896 
1897  ++remRows;
1898  removeRow(lp, i);
1899 
1900  ++m_stat[EMPTY_ROW];
1901 
1902  continue;
1903  }
1904 #endif
1905 
1906 #if ROW_SINGLETON
1907  // 6. row singleton
1908  if (row.size() == 1)
1909  {
1910  removeRowSingleton(lp, row, i);
1911  continue;
1912  }
1913 #endif
1914 
1915 #if FORCE_CONSTRAINT
1916  // 7. forcing constraint (postsolving)
1917  // fix variables to obtain the upper bound on constraint value
1918  if (rhsCnt == 0 && EQrel(rhsBnd, lp.lhs(i), feastol()))
1919  {
1920  MSG_INFO3( spxout << "IMAISM24 row " << i
1921  << ": forcing constraint fix on lhs ->"
1922  << " lhs=" << lp.lhs(i)
1923  << " rhsBnd=" << rhsBnd
1924  << std::endl; )
1925 
1926  DataArray<bool> fixedCol(row.size());
1927  DataArray<Real> lowers(row.size());
1928  DataArray<Real> uppers(row.size());
1929 
1930  for(int k = 0; k < row.size(); ++k)
1931  {
1932  Real aij = row.value(k);
1933  int j = row.index(k);
1934 
1935  fixedCol[k] = !(EQrel(lp.upper(j), lp.lower(j), m_epsilon));
1936 
1937  lowers[k] = lp.lower(j);
1938  uppers[k] = lp.upper(j);
1939 
1940  ASSERT_WARN( "WMAISM25", isNotZero(aij, epsZero()) );
1941 
1942  if (aij > 0.0)
1943  lp.changeLower(j, lp.upper(j));
1944  else
1945  lp.changeUpper(j, lp.lower(j));
1946  }
1947 
1948  m_hist.append(new ForceConstraintPS(lp, i, true, fixedCol, lowers, uppers));
1949 
1950  ++remRows;
1951  remNzos += row.size();
1952  removeRow(lp, i);
1953 
1954  ++m_stat[FORCE_ROW];
1955 
1956  continue;
1957  }
1958  // fix variables to obtain the lower bound on constraint value
1959  if (lhsCnt == 0 && EQrel(lhsBnd, lp.rhs(i), feastol()))
1960  {
1961  MSG_INFO3( spxout << "IMAISM26 row " << i
1962  << ": forcing constraint fix on rhs ->"
1963  << " rhs=" << lp.rhs(i)
1964  << " lhsBnd=" << lhsBnd
1965  << std::endl; )
1966 
1967  DataArray<bool> fixedCol(row.size());
1968  DataArray<Real> lowers(row.size());
1969  DataArray<Real> uppers(row.size());
1970 
1971  for(int k = 0; k < row.size(); ++k)
1972  {
1973  Real aij = row.value(k);
1974  int j = row.index(k);
1975 
1976  fixedCol[k] = !(EQrel(lp.upper(j), lp.lower(j), m_epsilon));
1977 
1978  lowers[k] = lp.lower(j);
1979  uppers[k] = lp.upper(j);
1980 
1981  ASSERT_WARN( "WMAISM27", isNotZero(aij, epsZero()) );
1982 
1983  if (aij > 0.0)
1984  lp.changeUpper(j, lp.lower(j));
1985  else
1986  lp.changeLower(j, lp.upper(j));
1987  }
1988 
1989  m_hist.append(new ForceConstraintPS(lp, i, false, fixedCol, lowers, uppers));
1990 
1991  ++remRows;
1992  remNzos += row.size();
1993  removeRow(lp, i);
1994 
1995  ++m_stat[FORCE_ROW];
1996 
1997  continue;
1998  }
1999 #endif
2000  }
2001 
2002  assert(remRows > 0 || remNzos == 0);
2003 
2004  if (remRows + chgLRhs + chgBnds > 0)
2005  {
2006  again = true;
2007  m_remRows += remRows;
2008  m_remNzos += remNzos;
2009  m_chgLRhs += chgLRhs;
2010  m_chgBnds += chgBnds;
2011 
2012  MSG_INFO2( spxout << "IMAISM28 Main simplifier (rows) removed "
2013  << remRows << " rows, "
2014  << remNzos << " non-zeros, "
2015  << chgBnds << " col bounds, "
2016  << chgLRhs << " row bounds"
2017  << std::endl; )
2018 
2019  }
2020  return OKAY;
2021 }
2022 
2024 {
2025  METHOD( "SPxMainSM::simplifyCols" );
2026 
2027  // This method simplifies the columns of the LP.
2028  //
2029  // The following operations are done:
2030  // 1. detect empty columns and fix corresponding variables
2031  // 2. detect variables that are unconstrained from below or above
2032  // and fix corresponding variables or remove involved constraints
2033  // 3. fix variables
2034  // 4. use column singleton variables with zero objective to adjust constraint bounds
2035  // 5. free column singleton combined with doubleton equation are
2036  // used to make the column singleton variable free
2037  // 6. substitute (implied) free column singletons
2038 
2039  int remRows = 0;
2040  int remCols = 0;
2041  int remNzos = 0;
2042  int chgBnds = 0;
2043 
2044  for(int j = lp.nCols()-1; j >= 0; --j)
2045  {
2046  const SVector& col = lp.colVector(j);
2047 
2048  // infeasible bounds
2049  if (GTrel(lp.lower(j), lp.upper(j), feastol()))
2050  {
2051  MSG_INFO3( spxout << "IMAISM29 col " << j
2052  << ": infeasible bounds on x" << j
2053  << " -> lower=" << lp.lower(j)
2054  << " upper=" << lp.upper(j)
2055  << std::endl; )
2056  return INFEASIBLE;
2057  }
2058 
2059  // 1. empty column
2060  if (col.size() == 0)
2061  {
2062 #if EMPTY_COLUMN
2063  MSG_INFO3( spxout << "IMAISM30 col " << j
2064  << ": empty -> maxObj=" << lp.maxObj(j)
2065  << " lower=" << lp.lower(j)
2066  << " upper=" << lp.upper(j); )
2067 
2068  Real val;
2069 
2070  if (GT(lp.maxObj(j), 0.0, epsZero()))
2071  {
2072  if (lp.upper(j) >= infinity)
2073  {
2074  MSG_INFO3( spxout << " unbounded" << std::endl; )
2075  return UNBOUNDED;
2076  }
2077  val = lp.upper(j);
2078  }
2079  else if (LT(lp.maxObj(j), 0.0, epsZero()))
2080  {
2081  if (lp.lower(j) <= -infinity)
2082  {
2083  MSG_INFO3( spxout << " unbounded" << std::endl; )
2084  return UNBOUNDED;
2085  }
2086  val = lp.lower(j);
2087  }
2088  else
2089  {
2090  assert(isZero(lp.maxObj(j), epsZero()));
2091  // any value within the bounds is ok
2092  if (lp.lower(j) > -infinity)
2093  val = lp.lower(j);
2094  else if (lp.upper(j) < infinity)
2095  val = lp.upper(j);
2096  else
2097  val = 0.0;
2098  }
2099  MSG_INFO3( spxout << " removed" << std::endl; )
2100 
2101  m_hist.append(new FixBoundsPS(lp, j, val));
2102  m_hist.append(new FixVariablePS(lp, *this, j, val));
2103 
2104  ++remCols;
2105  removeCol(lp, j);
2106 
2107  ++m_stat[EMPTY_COL];
2108 
2109  continue;
2110 #endif
2111  }
2112 
2113  if (NErel(lp.lower(j), lp.upper(j), feastol()))
2114  {
2115  // will be set to false if any constraint implies a bound on the variable
2116  bool loFree = true;
2117  bool upFree = true;
2118 
2119  // 1. fix and remove variables
2120  for(int k = 0; k < col.size(); ++k)
2121  {
2122  if (!loFree && !upFree)
2123  break;
2124 
2125  int i = col.index(k);
2126 
2127  // warn since this unhandled case may slip through unnoticed otherwise
2128  ASSERT_WARN( "WMAISM31", isNotZero(col.value(k), epsZero()) );
2129 
2130  if (col.value(k) > 0.0)
2131  {
2132  if (lp.rhs(i) < infinity)
2133  upFree = false;
2134 
2135  if (lp.lhs(i) > -infinity)
2136  loFree = false;
2137  }
2138  else if (col.value(k) < 0.0)
2139  {
2140  if (lp.rhs(i) < infinity)
2141  loFree = false;
2142 
2143  if (lp.lhs(i) > -infinity)
2144  upFree = false;
2145  }
2146  }
2147 
2148  // 2. detect variables that are unconstrained from below or above
2149  // max 3 x
2150  // s.t. 5 x >= 8
2151  if (GT(lp.maxObj(j), 0.0, epsZero()) && upFree)
2152  {
2153 #if FIX_VARIABLE
2154  MSG_INFO3( spxout << "IMAISM32 col " << j
2155  << ": x" << j
2156  << " unconstrained above ->"; )
2157 
2158  if (lp.upper(j) >= infinity)
2159  {
2160  MSG_INFO3( spxout << " unbounded" << std::endl; )
2161 
2162  return UNBOUNDED;
2163  }
2164  MSG_INFO3( spxout << " fixed at upper=" << lp.upper(j) << std::endl; )
2165 
2166  m_hist.append(new FixBoundsPS(lp, j, lp.upper(j)));
2167  lp.changeLower(j, lp.upper(j));
2168  }
2169  // max -3 x
2170  // s.t. 5 x <= 8
2171  else if (LT(lp.maxObj(j), 0.0, epsZero()) && loFree)
2172  {
2173  MSG_INFO3( spxout << "IMAISM33 col " << j
2174  << ": x" << j
2175  << " unconstrained below ->"; )
2176 
2177  if (lp.lower(j) <= -infinity)
2178  {
2179  MSG_INFO3( spxout << " unbounded" << std::endl; )
2180 
2181  return UNBOUNDED;
2182  }
2183  MSG_INFO3( spxout << " fixed at lower=" << lp.lower(j) << std::endl; )
2184 
2185  m_hist.append(new FixBoundsPS(lp, j, lp.lower(j)));
2186  lp.changeUpper(j, lp.lower(j));
2187 #endif
2188  }
2189  else if (isZero(lp.maxObj(j), epsZero()))
2190  {
2191 #if FREE_ZERO_OBJ_VARIABLE
2192  bool unconstrained_below = loFree && lp.lower(j) <= -infinity;
2193  bool unconstrained_above = upFree && lp.upper(j) >= infinity;
2194 
2195  if (unconstrained_below || unconstrained_above)
2196  {
2197  MSG_INFO3( spxout << "IMAISM34 col " << j
2198  << ": x" << j
2199  << " unconstrained "
2200  << (unconstrained_below ? "below" : "above")
2201  << " with zero objective (" << lp.maxObj(j)
2202  << ")" << std::endl; )
2203 
2204  SVector col_idx_sorted(col);
2205 
2206  // sort col elements by increasing idx
2207  IdxCompare compare;
2208  sorter_qsort(col_idx_sorted.mem()+1, col_idx_sorted.size(), compare);
2209 
2210  m_hist.append(new FreeZeroObjVariablePS(lp, j, unconstrained_below, col_idx_sorted));
2211 
2212  // we have to remove the rows with larger idx first, because otherwise the rows are reorder and indices
2213  // are out-of-date
2214  remRows += col.size();
2215  for(int k = col_idx_sorted.size()-1; k >= 0; --k)
2216  removeRow(lp, col_idx_sorted.index(k));
2217 
2218  // remove column
2219  removeCol(lp, j);
2220 
2221  // statistics
2222  for(int k = 0; k < col.size(); ++k)
2223  {
2224  int l = col.index(k);
2225  remNzos += lp.rowVector(l).size();
2226  }
2227 
2228  ++m_stat[FREE_ZOBJ_COL];
2229  ++remCols;
2230 
2231  continue;
2232  }
2233 #endif
2234  }
2235  }
2236 
2237 #if FIX_VARIABLE
2238  // 3. fix variable
2239  if (EQrel(lp.lower(j), lp.upper(j), feastol()))
2240  {
2241  MSG_INFO3( spxout << "IMAISM36 col " << j
2242  << ": x" << j
2243  << " fixed -> lower=" << lp.lower(j)
2244  << " upper=" << lp.upper(j) << std::endl; )
2245 
2246  fixColumn(lp, j);
2247 
2248  ++remCols;
2249  remNzos += col.size();
2250  removeCol(lp, j);
2251 
2252  ++m_stat[FIX_COL];
2253 
2254  continue;
2255  }
2256 #endif
2257 
2258  // handle column singletons
2259  if (col.size() == 1)
2260  {
2261  Real aij = col.value(0);
2262  int i = col.index(0);
2263 
2264  // 4. column singleton with zero objective
2265  if (isZero(lp.maxObj(j), epsZero()))
2266  {
2267 #if ZERO_OBJ_COL_SINGLETON
2268  MSG_INFO3( spxout << "IMAISM37 col " << j
2269  << ": singleton in row " << i
2270  << " with zero objective"; )
2271 
2272  Real lhs = -infinity;
2273  Real rhs = +infinity;
2274 
2275  if (GT(aij, 0.0, epsZero()))
2276  {
2277  if (lp.lhs(i) > -infinity && lp.upper(j) < infinity)
2278  lhs = lp.lhs(i) - aij * lp.upper(j);
2279  if (lp.rhs(i) < infinity && lp.lower(j) > -infinity)
2280  rhs = lp.rhs(i) - aij * lp.lower(j);
2281  }
2282  else if (LT(aij, 0.0, epsZero()))
2283  {
2284  if (lp.lhs(i) > -infinity && lp.lower(j) > -infinity)
2285  lhs = lp.lhs(i) - aij * lp.lower(j);
2286  if (lp.rhs(i) < infinity && lp.upper(j) < infinity)
2287  rhs = lp.rhs(i) - aij * lp.upper(j);
2288  }
2289  else
2290  {
2291  lhs = lp.lhs(i);
2292  rhs = lp.rhs(i);
2293  }
2294 
2295  if (isZero(lhs, epsZero()))
2296  lhs = 0.0;
2297  if (isZero(rhs, epsZero()))
2298  rhs = 0.0;
2299 
2300  MSG_INFO3( spxout << " removed -> lhs=" << lhs
2301  << " (" << lp.lhs(i)
2302  << ") rhs=" << rhs
2303  << " (" << lp.rhs(i)
2304  << ")" << std::endl; )
2305 
2306  m_hist.append(new ZeroObjColSingletonPS(lp, *this, j, i));
2307 
2308  lp.changeRange(i, lhs, rhs);
2309 
2310  ++remCols;
2311  ++remNzos;
2312  removeCol(lp, j);
2313 
2315 
2316  if (lp.lhs(i) <= -infinity && lp.rhs(i) >= infinity)
2317  {
2318  m_hist.append(new FreeConstraintPS(lp, i));
2319 
2320  ++remRows;
2321  removeRow(lp, i);
2322 
2323  ++m_stat[FREE_ROW];
2324  }
2325 
2326  continue;
2327 #endif
2328  }
2329 
2330  // 5. not free column singleton combined with doubleton equation
2331  else if (EQrel(lp.lhs(i), lp.rhs(i), feastol()) &&
2332  lp.rowVector(i).size() == 2 &&
2333  (lp.lower(j) > -infinity || lp.upper(j) < infinity))
2334  {
2335 #if DOUBLETON_EQUATION
2336  MSG_INFO3( spxout << "IMAISM38 col " << j
2337  << ": singleton in row " << i
2338  << " with doubleton equation ->"; )
2339 
2340  Real lhs = lp.lhs(i);
2341 
2342  const SVector& row = lp.rowVector(i);
2343 
2344  Real aik;
2345  int k;
2346 
2347  if (row.index(0) == j)
2348  {
2349  aik = row.value(1);
2350  k = row.index(1);
2351  }
2352  else if (row.index(1) == j)
2353  {
2354  aik = row.value(0);
2355  k = row.index(0);
2356  }
2357  else
2358  throw SPxInternalCodeException("XMAISM11 This should never happen.");
2359 
2360  ASSERT_WARN( "WMAISM39", isNotZero(aik, epsZero()) );
2361 
2362  Real lo, up;
2363  Real oldLower = lp.lower(k);
2364  Real oldUpper = lp.upper(k);
2365 
2366  Real scale1 = maxAbs(lhs, aij * lp.upper(j));
2367  Real scale2 = maxAbs(lhs, aij * lp.lower(j));
2368 
2369  if (scale1 < 1.0)
2370  scale1 = 1.0;
2371  if (scale2 < 1.0)
2372  scale2 = 1.0;
2373 
2374  Real z1 = (lhs / scale1) - (aij * lp.upper(j) / scale1);
2375  Real z2 = (lhs / scale2) - (aij * lp.lower(j) / scale2);
2376 
2377  if (isZero(z1, epsZero()))
2378  z1 = 0.0;
2379  if (isZero(z2, epsZero()))
2380  z2 = 0.0;
2381 
2382  if (GT(aij * aik, 0.0, epsZero()))
2383  {
2384  lo = (lp.upper(j) >= infinity) ? -infinity : z1 * scale1 / aik;
2385  up = (lp.lower(j) <= -infinity) ? infinity : z2 * scale2 / aik;
2386  }
2387  else if (LT(aij * aik, 0.0, epsZero()))
2388  {
2389  lo = (lp.lower(j) <= -infinity) ? -infinity : z2 * scale2 / aik;
2390  up = (lp.upper(j) >= infinity) ? infinity : z1 * scale1 / aik;
2391  }
2392  else
2393  throw SPxInternalCodeException("XMAISM12 This should never happen.");
2394 
2395  if (GTrel(lo, lp.lower(k), epsZero()))
2396  lp.changeLower(k, lo);
2397 
2398  if (LTrel(up, lp.upper(k), epsZero()))
2399  lp.changeUpper(k, up);
2400 
2401  MSG_INFO3( spxout << " made free, bounds on x" << k
2402  << ": lower=" << lp.lower(k)
2403  << " (" << oldLower
2404  << ") upper=" << lp.upper(k)
2405  << " (" << oldUpper
2406  << ")" << std::endl; )
2407 
2408  // infeasible bounds
2409  if (GTrel(lp.lower(k), lp.upper(k), feastol()))
2410  {
2411  MSG_INFO3( spxout << "new bounds are infeasible"
2412  << std::endl; )
2413  return INFEASIBLE;
2414  }
2415 
2416  m_hist.append(new DoubletonEquationPS(lp, j, k, i, oldLower, oldUpper));
2417 
2418  if (lp.lower(j) > -infinity && lp.upper(j) < infinity)
2419  chgBnds += 2;
2420  else
2421  ++chgBnds;
2422 
2423  lp.changeBounds(j, -infinity, infinity);
2424 
2425  ++m_stat[DOUBLETON_ROW];
2426 #endif
2427  }
2428 
2429  // 6. (implied) free column singleton
2430  if (lp.lower(j) <= -infinity && lp.upper(j) >= infinity)
2431  {
2432 #if FREE_COL_SINGLETON
2433  Real slackVal = lp.lhs(i);
2434 
2435  // constraint i is an inequality constraint -> transform into equation type
2436  if (NErel(lp.lhs(i), lp.rhs(i), feastol()))
2437  {
2438  MSG_INFO3( spxout << "IMAISM40 col " << j
2439  << ": free singleton in inequality constraint" << std::endl; )
2440 
2441  // do nothing if constraint i is unconstrained
2442  if (lp.lhs(i) <= -infinity && lp.rhs(i) >= infinity)
2443  continue;
2444 
2445  // introduce slack variable to obtain equality constraint
2446  Real sMaxObj = lp.maxObj(j) / aij; // after substituting variable j in objective
2447  Real sLo = lp.lhs(i);
2448  Real sUp = lp.rhs(i);
2449 
2450  if (GT(sMaxObj, 0.0, epsZero()))
2451  {
2452  if (sUp >= infinity)
2453  {
2454  MSG_INFO3( spxout << " -> problem unbounded" << std::endl; )
2455  return UNBOUNDED;
2456  }
2457  slackVal = sUp;
2458  }
2459  else if (LT(sMaxObj, 0.0, epsZero()))
2460  {
2461  if (sLo <= -infinity)
2462  {
2463  MSG_INFO3( spxout << " -> problem unbounded" << std::endl; )
2464  return UNBOUNDED;
2465  }
2466  slackVal = sLo;
2467  }
2468  else
2469  {
2470  assert(isZero(sMaxObj, epsZero()));
2471  // any value within the bounds is ok
2472  if (sLo > -infinity)
2473  slackVal = sLo;
2474  else if (sUp < infinity)
2475  slackVal = sUp;
2476  else
2477  throw SPxInternalCodeException("XMAISM13 This should never happen.");
2478  }
2479  }
2480 
2481  m_hist.append(new FreeColSingletonPS(lp, *this, j, i, slackVal));
2482 
2483  MSG_INFO3( spxout << "IMAISM41 col " << j
2484  << ": free singleton removed" << std::endl; )
2485 
2486  const SVector& row = lp.rowVector(i);
2487 
2488  for (int h = 0; h < row.size(); ++h)
2489  {
2490  int k = row.index(h);
2491 
2492  if (k != j)
2493  {
2494  Real new_obj = lp.obj(k) - (lp.obj(j) * row.value(h) / aij);
2495  lp.changeObj(k, new_obj);
2496  }
2497  }
2498 
2499  ++remRows;
2500  ++remCols;
2501  remNzos += row.size();
2502  removeRow(lp, i);
2503  removeCol(lp, j);
2504 
2506 #endif
2507  }
2508  }
2509  }
2510 
2511  if (remCols + remRows > 0)
2512  {
2513  again = true;
2514  m_remRows += remRows;
2515  m_remCols += remCols;
2516  m_remNzos += remNzos;
2517  m_chgBnds += chgBnds;
2518 
2519  MSG_INFO2( spxout << "IMAISM42 Main simplifier (columns) removed "
2520  << remRows << " rows, "
2521  << remCols << " cols, "
2522  << remNzos << " non-zeros, "
2523  << chgBnds << " col bounds"
2524  << std::endl; )
2525  }
2526  return OKAY;
2527 }
2528 
2530 {
2531  METHOD( "SPxMainSM::simplifyDual" );
2532 
2533  // This method simplifies LP using the following dual structures:
2534  //
2535  // 1. dominated columns
2536  // 2. weakly dominated columns
2537  //
2538  // For constructing the dual variables, it is assumed that the objective sense is max
2539 
2540  int remRows = 0;
2541  int remCols = 0;
2542  int remNzos = 0;
2543 
2544  DataArray<bool> colSingleton(lp.nCols());
2545  DVector dualVarLo(lp.nRows());
2546  DVector dualVarUp(lp.nRows());
2547  DVector dualConsLo(lp.nCols());
2548  DVector dualConsUp(lp.nCols());
2549 
2550  // init
2551  for(int i = lp.nRows()-1; i >= 0; --i)
2552  {
2553  // check for unconstrained constraints
2554  if (lp.lhs(i) <= -infinity && lp.rhs(i) >= infinity)
2555  {
2556  MSG_INFO3( spxout << "IMAISM43 row " << i
2557  << ": unconstrained" << std::endl; )
2558 
2559  m_hist.append(new FreeConstraintPS(lp, i));
2560 
2561  ++remRows;
2562  remNzos += lp.rowVector(i).size();
2563  removeRow(lp, i);
2564 
2565  ++m_stat[FREE_ROW];
2566 
2567  continue;
2568  }
2569 
2570  // corresponds to maximization sense
2571  dualVarLo[i] = (lp.lhs(i) <= -infinity) ? 0.0 : -infinity;
2572  dualVarUp[i] = (lp.rhs(i) >= infinity) ? 0.0 : infinity;
2573  }
2574 
2575  // compute bounds on the dual variables using column singletons
2576  for(int j = 0; j < lp.nCols(); ++j)
2577  {
2578  if (lp.colVector(j).size() == 1)
2579  {
2580  int i = lp.colVector(j).index(0);
2581  Real aij = lp.colVector(j).value(0);
2582 
2583  ASSERT_WARN( "WMAISM44", isNotZero(aij, epsZero()) );
2584 
2585  Real bound = lp.maxObj(j) / aij;
2586 
2587  if (aij > 0)
2588  {
2589  if (lp.lower(j) <= -infinity && bound < dualVarUp[i])
2590  dualVarUp[i] = bound;
2591  if (lp.upper(j) >= infinity && bound > dualVarLo[i])
2592  dualVarLo[i] = bound;
2593  }
2594  else if (aij < 0)
2595  {
2596  if (lp.lower(j) <= -infinity && bound > dualVarLo[i])
2597  dualVarLo[i] = bound;
2598  if (lp.upper(j) >= infinity && bound < dualVarUp[i])
2599  dualVarUp[i] = bound;
2600  }
2601  }
2602  }
2603 
2604  // compute bounds on the dual constraints
2605  for(int j = 0; j < lp.nCols(); ++j)
2606  {
2607  dualConsLo[j] = dualConsUp[j] = 0.0;
2608 
2609  const SVector& col = lp.colVector(j);
2610 
2611  for(int k = 0; k < col.size(); ++k)
2612  {
2613  if (dualConsLo[j] <= -infinity && dualConsUp[j] >= infinity)
2614  break;
2615 
2616  Real aij = col.value(k);
2617  int i = col.index(k);
2618 
2619  ASSERT_WARN( "WMAISM45", isNotZero(aij, epsZero()) );
2620 
2621  if (aij > 0)
2622  {
2623  if (dualVarLo[i] <= -infinity)
2624  dualConsLo[j] = -infinity;
2625  else
2626  dualConsLo[j] += aij * dualVarLo[i];
2627 
2628  if (dualVarUp[i] >= infinity)
2629  dualConsUp[j] = infinity;
2630  else
2631  dualConsUp[j] += aij * dualVarUp[i];
2632  }
2633  else if (aij < 0)
2634  {
2635  if (dualVarLo[i] <= -infinity)
2636  dualConsUp[j] = infinity;
2637  else
2638  dualConsUp[j] += aij * dualVarLo[i];
2639 
2640  if (dualVarUp[i] >= infinity)
2641  dualConsLo[j] = -infinity;
2642  else
2643  dualConsLo[j] += aij * dualVarUp[i];
2644  }
2645  }
2646  }
2647 
2648  for(int j = lp.nCols()-1; j >= 0; --j)
2649  {
2650  if (lp.colVector(j).size() <= 1)
2651  continue;
2652 
2653  // dual infeasibility checks
2654  if (LTrel(dualConsUp[j], dualConsLo[j], opttol()))
2655  {
2656  MSG_INFO3( spxout << "IMAISM46 col " << j
2657  << ": dual infeasible -> dual lhs bound=" << dualConsLo[j]
2658  << " dual rhs bound=" << dualConsUp[j] << std::endl; )
2659  return DUAL_INFEASIBLE;
2660  }
2661 
2662  Real obj = lp.maxObj(j);
2663 
2664  // 1. dominated column
2665  // Is the problem really unbounded in the cases below ??? Or is only dual infeasiblity be shown
2666  if (GTrel(obj, dualConsUp[j], opttol()))
2667  {
2668 #if DOMINATED_COLUMN
2669  MSG_INFO3( spxout << "IMAISM47 col " << j
2670  << ": dominated -> maxObj=" << obj
2671  << " dual rhs bound=" << dualConsUp[j] << std::endl; )
2672 
2673  if (lp.upper(j) >= infinity)
2674  {
2675  MSG_INFO2( spxout << " unbounded" << std::endl; )
2676  return UNBOUNDED;
2677  }
2678 
2679  MSG_INFO3( spxout << " fixed at upper=" << lp.upper(j) << std::endl; )
2680 
2681  m_hist.append(new FixBoundsPS(lp, j, lp.upper(j)));
2682  lp.changeLower(j, lp.upper(j));
2683 
2684  ++m_stat[DOMINATED_COL];
2685 #endif
2686  }
2687  else if (LTrel(obj, dualConsLo[j], opttol()))
2688  {
2689 #if DOMINATED_COLUMN
2690  MSG_INFO3( spxout << "IMAISM48 col " << j
2691  << ": dominated -> maxObj=" << obj
2692  << " dual lhs bound=" << dualConsLo[j] << std::endl; )
2693 
2694  if (lp.lower(j) <= -infinity)
2695  {
2696  MSG_INFO2( spxout << " unbounded" << std::endl; )
2697  return UNBOUNDED;
2698  }
2699 
2700  MSG_INFO3( spxout << " fixed at lower=" << lp.lower(j) << std::endl; )
2701 
2702  m_hist.append(new FixBoundsPS(lp, j, lp.lower(j)));
2703  lp.changeUpper(j, lp.lower(j));
2704 
2705  ++m_stat[DOMINATED_COL];
2706 #endif
2707  }
2708 
2709  // 2. weakly dominated column (no postsolving)
2710  else if (lp.upper(j) < infinity && EQrel(obj, dualConsUp[j], opttol()))
2711  {
2712 #if WEAKLY_DOMINATED_COLUMN
2713  MSG_INFO3( spxout << "IMAISM49 col " << j
2714  << ": weakly dominated -> maxObj=" << obj
2715  << " dual rhs bound=" << dualConsUp[j] << std::endl; )
2716 
2717  m_hist.append(new FixBoundsPS(lp, j, lp.upper(j)));
2718  lp.changeLower(j, lp.upper(j));
2719 
2721 #endif
2722  }
2723  else if (lp.lower(j) > -infinity && EQrel(obj, dualConsLo[j], opttol()))
2724  {
2725 #if WEAKLY_DOMINATED_COLUMN
2726  MSG_INFO3( spxout << "IMAISM50 col " << j
2727  << ": weakly dominated -> maxObj=" << obj
2728  << " dual lhs bound=" << dualConsLo[j] << std::endl; )
2729 
2730  m_hist.append(new FixBoundsPS(lp, j, lp.lower(j)));
2731  lp.changeUpper(j, lp.lower(j));
2732 
2734 #endif
2735  }
2736 
2737  // fix column
2738  if (EQrel(lp.lower(j), lp.upper(j), feastol()))
2739  {
2740 #if FIX_VARIABLE
2741  fixColumn(lp, j);
2742 
2743  ++remCols;
2744  remNzos += lp.colVector(j).size();
2745  removeCol(lp, j);
2746 
2747  ++m_stat[FIX_COL];
2748 #endif
2749  }
2750  }
2751 
2752  assert(remRows > 0 || remCols > 0 || remNzos == 0);
2753 
2754  if (remCols + remRows > 0)
2755  {
2756  again = true;
2757  m_remRows += remRows;
2758  m_remCols += remCols;
2759  m_remNzos += remNzos;
2760 
2761  MSG_INFO2( spxout << "IMAISM51 Main simplifier (dual) removed "
2762  << remRows << " rows, "
2763  << remCols << " cols, "
2764  << remNzos << " non-zeros"
2765  << std::endl; )
2766  }
2767  return OKAY;
2768 }
2769 
2771 {
2772  METHOD( "SPxMainSM::duplicateRows" );
2773 
2774  // This method simplifies the LP by removing duplicate rows
2775  // Duplicates are detected using the algorithm of Bixby and Wagner [1987]
2776 
2777  // Possible extension: use generalized definition of duplicate rows according to Andersen and Andersen
2778  // However: the resulting sparsification is often very small since the involved rows are usually very sparse
2779 
2780  int remRows = 0;
2781  int remNzos = 0;
2782 
2783  // remove empty rows and columns
2785  if (ret != OKAY)
2786  return ret;
2787 
2788 #if ROW_SINGLETON
2789  int rs_remRows = 0;
2790  for (int i = 0; i < lp.nRows(); ++i)
2791  {
2792  const SVector& row = lp.rowVector(i);
2793 
2794  if (row.size() == 1)
2795  {
2796  removeRowSingleton(lp, row, i);
2797  rs_remRows++;
2798  }
2799  }
2800 
2801  if (rs_remRows > 0)
2802  {
2803  MSG_INFO2( spxout << "IMAISM79 Main simplifier duplicate rows (row singleton stage) removed "
2804  << rs_remRows << " rows, "
2805  << rs_remRows << " non-zeros"
2806  << std::endl; )
2807  }
2808 #endif
2809 
2810  if (lp.nRows() < 2)
2811  return OKAY;
2812 
2813  DataArray<int> pClass(lp.nRows()); // class of parallel rows
2814  DataArray<int> classSize(lp.nRows()); // size of each class
2815  DataArray<double> scale(lp.nRows()); // scaling factor for each row
2816  int* idxMem = 0;
2817  try
2818  {
2819  spx_alloc(idxMem, lp.nRows());
2820  IdxSet idxSet(lp.nRows(), idxMem); // set of feasible indices for new pClass
2821 
2822  // init
2823  pClass[0] = 0;
2824  scale[0] = 0.0;
2825  classSize[0] = lp.nRows();
2826 
2827  for(int i = 1; i < lp.nRows(); ++i)
2828  {
2829  pClass[i] = 0;
2830  scale[i] = 0.0;
2831  classSize[i] = 0;
2832  idxSet.addIdx(i);
2833  }
2834 
2835  // stores parallel classes with non-zero colum entry
2836  Array<DSVector> classSet(lp.nRows());
2837  Real oldVal;
2838 
2839  // main loop
2840  for(int j = 0; j < lp.nCols(); ++j)
2841  {
2842  const SVector& col = lp.colVector(j);
2843 
2844  for(int k = 0; k < col.size(); ++k)
2845  {
2846  Real aij = col.value(k);
2847  int i = col.index(k);
2848 
2849  ASSERT_WARN( "WMAISM52", isNotZero(aij, epsZero()) );
2850 
2851  if (scale[i] == 0.0)
2852  scale[i] = aij;
2853 
2854  classSet[pClass[i]].add(i, aij / scale[i]);
2855  if (--classSize[pClass[i]] == 0)
2856  idxSet.addIdx(pClass[i]);
2857  }
2858 
2859  // update each parallel class with non-zero column entry
2860  for(int m = 0; m < col.size(); ++m)
2861  {
2862  int k = pClass[col.index(m)];
2863 
2864  if (classSet[k].size() > 0)
2865  {
2866  // sort classSet[k] w.r.t. scaled column values
2867  ElementCompare compare;
2868 
2869  if (classSet[k].size() > 1)
2870  sorter_qsort(classSet[k].mem()+1, classSet[k].size(), compare);
2871 
2872  // use new index first
2873  int classIdx = idxSet.index(0);
2874  idxSet.remove(0);
2875 
2876  for(int l = 0; l < classSet[k].size(); ++l)
2877  {
2878  if (l != 0 && NErel(classSet[k].value(l), oldVal, epsZero()))
2879  {
2880  classIdx = idxSet.index(0);
2881  idxSet.remove(0);
2882  }
2883 
2884  pClass[classSet[k].index(l)] = classIdx;
2885  ++classSize[classIdx];
2886 
2887  oldVal = classSet[k].value(l);
2888  }
2889 
2890  classSet[k].clear();
2891  }
2892  }
2893  }
2894  }
2895  catch(std::bad_alloc& x)
2896  {
2897  spx_free(idxMem);
2898  throw x;
2899  }
2900  catch(SPxMemoryException& x)
2901  {
2902  spx_free(idxMem);
2903  throw x;
2904  }
2905  spx_free(idxMem);
2906 
2907  // arrange duplicate rows using bucket sort w.r.t. their pClass values
2908  Array<DSVector> dupRows(lp.nRows());
2909  DataArray<bool> remRow(lp.nRows());
2910 
2911  for(int k = 0; k < dupRows.size(); ++k)
2912  {
2913  remRow[k] = false;
2914  dupRows[pClass[k]].add(k, 0.0);
2915  }
2916 
2917  const int nRowsOld_tmp = lp.nRows();
2918  int* perm_tmp = new int[nRowsOld_tmp];
2919 
2920  for(int j = 0; j < nRowsOld_tmp; ++j)
2921  {
2922  perm_tmp[j] = 0;
2923  }
2924 
2925  int idxFirstDupRows = -1;
2926  int idxLastDupRows = -1;
2927  int numDelRows = 0;
2928 
2929  for(int k = 0; k < dupRows.size(); ++k)
2930  {
2931  if (dupRows[k].size() > 1 && !(lp.rowVector(dupRows[k].index(0)).size() == 1))
2932  {
2933  idxLastDupRows = k;
2934 
2935  if(idxFirstDupRows < 0)
2936  {
2937  idxFirstDupRows = k;
2938  }
2939 
2940  for(int l = 1; l < dupRows[k].size(); ++l)
2941  {
2942  int i = dupRows[k].index(l);
2943  perm_tmp[i] = -1;
2944  }
2945 
2946  numDelRows += (dupRows[k].size()-1);
2947  }
2948  }
2949 
2950  {
2951  int k_tmp, j_tmp = -1;
2952  for (k_tmp = j_tmp = 0; k_tmp < nRowsOld_tmp; ++k_tmp)
2953  {
2954  if (perm_tmp[k_tmp] >= 0)
2955  perm_tmp[k_tmp] = j_tmp++;
2956  }
2957  }
2958 
2959  // store rhs and lhs changes for combined update
2960  bool doChangeRanges = false;
2961  DVector newLhsVec(lp.lhs());
2962  DVector newRhsVec(lp.rhs());
2963 
2964  for(int k = 0; k < dupRows.size(); ++k)
2965  {
2966  if (dupRows[k].size() > 1 && !(lp.rowVector(dupRows[k].index(0)).size() == 1))
2967  {
2968  MSG_INFO3( spxout << "IMAISM53 " << dupRows[k].size()
2969  << " duplicate rows found" << std::endl; )
2970 
2971  m_stat[DUPLICATE_ROW] += dupRows[k].size()-1;
2972 
2973  // index of one non-column singleton row in dupRows[k]
2974  int rowIdx = -1;
2975  int maxLhsIdx = -1;
2976  int minRhsIdx = -1;
2977  Real maxLhs = -infinity;
2978  Real minRhs = +infinity;
2979 
2980  DataArray<bool> isLhsEqualRhs(dupRows[k].size());
2981 
2982  // determine strictest bounds on constraint
2983  for(int l = 0; l < dupRows[k].size(); ++l)
2984  {
2985  int i = dupRows[k].index(l);
2986  isLhsEqualRhs[l] = EQrel(lp.lhs(i), lp.rhs(i), PostStep::eps());
2987 
2988  ASSERT_WARN( "WMAISM54", isNotZero(scale[i], epsZero()) );
2989 
2990  if (rowIdx == -1)
2991  {
2992  rowIdx = i;
2993  maxLhs = lp.lhs(rowIdx);
2994  minRhs = lp.rhs(rowIdx);
2995  }
2996  else
2997  {
2998  Real scaledLhs, scaledRhs;
2999  Real factor = scale[rowIdx] / scale[i];
3000 
3001  if (factor > 0)
3002  {
3003  scaledLhs = (lp.lhs(i) <= -infinity) ? -infinity : lp.lhs(i) * factor;
3004  scaledRhs = (lp.rhs(i) >= infinity) ? infinity : lp.rhs(i) * factor;
3005  }
3006  else
3007  {
3008  scaledLhs = (lp.rhs(i) >= infinity) ? -infinity : lp.rhs(i) * factor;
3009  scaledRhs = (lp.lhs(i) <= -infinity) ? infinity : lp.lhs(i) * factor;
3010  }
3011  if (scaledLhs > maxLhs)
3012  {
3013  maxLhs = scaledLhs;
3014  maxLhsIdx = i;
3015  }
3016  if (scaledRhs < minRhs)
3017  {
3018  minRhs = scaledRhs;
3019  minRhsIdx = i;
3020  }
3021 
3022  remRow[i] = true;
3023  }
3024  }
3025 
3026  if (rowIdx != -1)
3027  {
3028  Real newLhs = (maxLhs > lp.lhs(rowIdx)) ? maxLhs : lp.lhs(rowIdx);
3029  Real newRhs = (minRhs < lp.rhs(rowIdx)) ? minRhs : lp.rhs(rowIdx);
3030 
3031  if(k == idxLastDupRows)
3032  {
3033  DataArray<int> da_perm(nRowsOld_tmp);
3034  for(int j = 0; j < nRowsOld_tmp; ++j)
3035  {
3036  da_perm[j] = perm_tmp[j];
3037  }
3038  m_hist.append(new DuplicateRowsPS(lp, rowIdx, maxLhsIdx, minRhsIdx, dupRows[k], scale, da_perm, isLhsEqualRhs, true, EQrel(newLhs, newRhs), k==idxFirstDupRows));
3039  }
3040  else
3041  {
3042  DataArray<int> da_perm_empty(0);
3043 
3044  m_hist.append(new DuplicateRowsPS(lp, rowIdx, maxLhsIdx, minRhsIdx, dupRows[k], scale, da_perm_empty, isLhsEqualRhs, false, EQrel(newLhs, newRhs), k == idxFirstDupRows));
3045  }
3046 
3047  if (maxLhs > lp.lhs(rowIdx) || minRhs < lp.rhs(rowIdx))
3048  {
3049  // modify lhs and rhs of constraint rowIdx
3050  doChangeRanges = true;
3051 
3052  if (LTrel(newRhs, newLhs, feastol()))
3053  {
3054  MSG_INFO3( spxout << "IMAISM55 duplicate rows yield infeasible bounds:"
3055  << " lhs=" << newLhs
3056  << " rhs=" << newRhs << std::endl; )
3057  delete[] perm_tmp;
3058  return INFEASIBLE;
3059  }
3060  // if we accept the infeasibility we should clean up the values to avoid problems later
3061  if( newRhs < newLhs )
3062  newRhs = newLhs;
3063 
3064  newLhsVec[rowIdx] = newLhs;
3065  newRhsVec[rowIdx] = newRhs;
3066  }
3067  }
3068  }
3069  }
3070 
3071  // change ranges for all modified constraints by one single call (more efficient)
3072  if (doChangeRanges)
3073  {
3074  lp.changeRange(newLhsVec, newRhsVec);
3075  }
3076 
3077  // remove all rows by one single method call (more efficient)
3078  const int nRowsOld = lp.nRows();
3079  int* perm = new int[nRowsOld];
3080 
3081  for(int i = 0; i < nRowsOld; ++i)
3082  {
3083  if (remRow[i])
3084  {
3085  perm[i] = -1;
3086  ++remRows;
3087  remNzos += lp.rowVector(i).size();
3088  }
3089  else
3090  perm[i] = 0;
3091  }
3092  lp.removeRows(perm);
3093 
3094  for(int i = 0; i < nRowsOld; ++i)
3095  {
3096  // assert that the pre-computed permutation was correct
3097  assert(perm[i] == perm_tmp[i]);
3098 
3099  // update the global index mapping
3100  if (perm[i] >= 0)
3101  m_rIdx[perm[i]] = m_rIdx[i];
3102  }
3103 
3104  delete[] perm;
3105  delete[] perm_tmp;
3106 
3107  if (remRows + remNzos > 0)
3108  {
3109  again = true;
3110  m_remRows += remRows;
3111  m_remNzos += remNzos;
3112 
3113  MSG_INFO2( spxout << "IMAISM56 Main simplifier (duplicate rows) removed "
3114  << remRows << " rows, "
3115  << remNzos << " non-zeros"
3116  << std::endl; )
3117  }
3118  return OKAY;
3119 }
3120 
3122 {
3123  METHOD( "SPxMainSM::duplicateCols" );
3124 
3125  // This method simplifies the LP by removing duplicate columns
3126  // Duplicates are detected using the algorithm of Bixby and Wagner [1987]
3127 
3128  int remCols = 0;
3129  int remNzos = 0;
3130 
3131  // remove empty rows and columns
3133  if (ret != OKAY)
3134  return ret;
3135 
3136  if (lp.nCols() < 2)
3137  return OKAY;
3138 
3139  DataArray<int> pClass(lp.nCols()); // class of parallel columns
3140  DataArray<int> classSize(lp.nCols()); // size of each class
3141  DataArray<double> scale(lp.nCols()); // scaling factor for each column
3142  int* idxMem = 0;
3143  try
3144  {
3145  spx_alloc(idxMem, lp.nCols());
3146  IdxSet idxSet(lp.nCols(), idxMem); // set of feasible indices for new pClass
3147 
3148  // init
3149  pClass[0] = 0;
3150  scale[0] = 0.0;
3151  classSize[0] = lp.nCols();
3152 
3153  for(int j = 1; j < lp.nCols(); ++j)
3154  {
3155  pClass[j] = 0;
3156  scale[j] = 0.0;
3157  classSize[j] = 0;
3158  idxSet.addIdx(j);
3159  }
3160 
3161  // stores parallel classes with non-zero row entry
3162  Array<DSVector> classSet(lp.nCols());
3163 
3164  Real oldVal;
3165 
3166  // main loop
3167  for(int i = 0; i < lp.nRows(); ++i)
3168  {
3169  const SVector& row = lp.rowVector(i);
3170 
3171  for(int k = 0; k < row.size(); ++k)
3172  {
3173  Real aij = row.value(k);
3174  int j = row.index(k);
3175 
3176  ASSERT_WARN( "WMAISM57", isNotZero(aij, epsZero()) );
3177 
3178  if (scale[j] == 0.0)
3179  scale[j] = aij;
3180 
3181  classSet[pClass[j]].add(j, aij / scale[j]);
3182  if (--classSize[pClass[j]] == 0)
3183  idxSet.addIdx(pClass[j]);
3184  }
3185 
3186  // update each parallel class with non-zero row entry
3187  for(int m = 0; m < row.size(); ++m)
3188  {
3189  int k = pClass[row.index(m)];
3190 
3191  if (classSet[k].size() > 0)
3192  {
3193  // sort classSet[k] w.r.t. scaled row values
3194  ElementCompare compare;
3195 
3196  if (classSet[k].size() > 1)
3197  sorter_qsort(classSet[k].mem()+1, classSet[k].size(), compare);
3198 
3199  // use new index first
3200  int classIdx = idxSet.index(0);
3201  idxSet.remove(0);
3202 
3203  for(int l = 0; l < classSet[k].size(); ++l)
3204  {
3205  if (l != 0 && NErel(classSet[k].value(l), oldVal, epsZero()))
3206  {
3207  // start new parallel class
3208  classIdx = idxSet.index(0);
3209  idxSet.remove(0);
3210  }
3211 
3212  pClass[classSet[k].index(l)] = classIdx;
3213  ++classSize[classIdx];
3214 
3215  oldVal = classSet[k].value(l);
3216  }
3217 
3218  classSet[k].clear();
3219  }
3220  }
3221  }
3222  }
3223  catch(std::bad_alloc& x)
3224  {
3225  spx_free(idxMem);
3226  throw x;
3227  }
3228  catch(SPxMemoryException& x)
3229  {
3230  spx_free(idxMem);
3231  throw x;
3232  }
3233 
3234  spx_free(idxMem);
3235 
3236  // arrange duplicate columns w.r.t. their pClass values
3237  Array<DSVector> dupCols(lp.nCols());
3238 
3239  for(int k = 0; k < dupCols.size(); ++k)
3240  dupCols[pClass[k]].add(k, 0.0);
3241 
3242  DataArray<bool> remCol(lp.nCols());
3243  DataArray<bool> fixAndRemCol(lp.nCols());
3244 
3245  for(int j = 0; j < lp.nCols(); ++j)
3246  {
3247  remCol[j] = false;
3248  fixAndRemCol[j] = false;
3249  }
3250 
3251  bool hasDuplicateCol = false;
3252  DataArray<int> m_perm_empty(0);
3253 
3254  for(int k = 0; k < dupCols.size(); ++k)
3255  {
3256  if (dupCols[k].size() > 1 && !(lp.colVector(dupCols[k].index(0)).size() == 1))
3257  {
3258  MSG_INFO3( spxout << "IMAISM58 " << dupCols[k].size()
3259  << " duplicate columns found" << std::endl; )
3260 
3261  if (!hasDuplicateCol)
3262  {
3263  m_hist.append(new DuplicateColsPS(lp, 0, 0, 1.0, m_perm_empty, true));
3264  hasDuplicateCol = true;
3265  }
3266 
3267  for(int l = 0; l < dupCols[k].size(); ++l)
3268  {
3269  for(int m = 0; m < dupCols[k].size(); ++m)
3270  {
3271  int j1 = dupCols[k].index(l);
3272  int j2 = dupCols[k].index(m);
3273 
3274  if (l != m && !remCol[j1] && !remCol[j2])
3275  {
3276  Real cj1 = lp.maxObj(j1);
3277  Real cj2 = lp.maxObj(j2);
3278 
3279  // A.j1 = factor * A.j2
3280  Real factor = scale[j1] / scale[j2];
3281  Real objDif = cj1 - cj2 * scale[j1] / scale[j2];
3282 
3283  ASSERT_WARN( "WMAISM59", isNotZero(factor, epsZero()) );
3284 
3285  if (isZero(objDif, epsZero()))
3286  {
3287  // case 1: objectives also duplicate
3288 
3289  // if 0 is not within the column bounds, we are not able to postsolve if the aggregated column has
3290  // status ZERO, hence we skip this case
3291  if (LErel(lp.lower(j1), 0.0) && GErel(lp.upper(j1), 0.0)
3292  && LErel(lp.lower(j2), 0.0) && GErel(lp.upper(j2), 0.0))
3293  {
3294  // variable substitution xj2' := xj2 + factor * xj1 <=> xj2 = -factor * xj1 + xj2'
3295  m_hist.append(new DuplicateColsPS(lp, j1, j2, factor, m_perm_empty));
3296 
3297  // update bounds of remaining column j2 (new column j2')
3298  if (factor > 0)
3299  {
3300  if (lp.lower(j2) <= -infinity || lp.lower(j1) <= -infinity)
3301  lp.changeLower(j2, -infinity);
3302  else
3303  lp.changeLower(j2, lp.lower(j2) + factor * lp.lower(j1));
3304 
3305  if (lp.upper(j2) >= infinity || lp.upper(j1) >= infinity)
3306  lp.changeUpper(j2, infinity);
3307  else
3308  lp.changeUpper(j2, lp.upper(j2) + factor * lp.upper(j1));
3309  }
3310  else if (factor < 0)
3311  {
3312  if (lp.lower(j2) <= -infinity || lp.upper(j1) >= infinity)
3313  lp.changeLower(j2, -infinity);
3314  else
3315  lp.changeLower(j2, lp.lower(j2) + factor * lp.upper(j1));
3316 
3317  if (lp.upper(j2) >= infinity || lp.lower(j1) <= -infinity)
3318  lp.changeUpper(j2, infinity);
3319  else
3320  lp.changeUpper(j2, lp.upper(j2) + factor * lp.lower(j1));
3321  }
3322 
3323  MSG_INFO3( spxout << "IMAISM60 two duplicate columns " << j1
3324  << ", " << j2
3325  << " replaced by one" << std::endl; )
3326 
3327  remCol[j1] = true;
3328 
3330  }
3331  else
3332  {
3333  MSG_INFO3( spxout << "IMAISM80 not removing two duplicate columns " << j1
3334  << ", " << j2
3335  << " because zero not contained in their bounds" << std::endl; )
3336  }
3337  }
3338  else
3339  {
3340  // case 2: objectives not duplicate
3341  // considered for maximization sense
3342  if (lp.lower(j2) <= -infinity)
3343  {
3344  if (factor > 0 && objDif > 0)
3345  {
3346  if (lp.upper(j1) >= infinity)
3347  {
3348  MSG_INFO3( spxout << "IMAISM75 LP unbounded" << std::endl; )
3349  return UNBOUNDED;
3350  }
3351 
3352  // fix j1 at upper bound
3353  MSG_INFO3( spxout << "IMAISM61 two duplicate columns " << j1
3354  << ", " << j2
3355  << " first one fixed at upper bound=" << lp.upper(j1) << std::endl; )
3356 
3357  m_hist.append(new FixBoundsPS(lp, j1, lp.upper(j1)));
3358  lp.changeLower(j1, lp.upper(j1));
3359  }
3360  else if (factor < 0 && objDif < 0)
3361  {
3362  if (lp.lower(j1) <= -infinity)
3363  {
3364  MSG_INFO3( spxout << "IMAISM76 LP unbounded" << std::endl; )
3365  return UNBOUNDED;
3366  }
3367 
3368  // fix j1 at lower bound
3369  MSG_INFO3( spxout << "IMAISM62 two duplicate columns " << j1
3370  << ", " << j2
3371  << " first one fixed at lower bound=" << lp.lower(j1) << std::endl; )
3372 
3373  m_hist.append(new FixBoundsPS(lp, j1, lp.lower(j1)));
3374  lp.changeUpper(j1, lp.lower(j1));
3375  }
3376  }
3377  else if (lp.upper(j2) >= infinity)
3378  {
3379  // fix j1 at upper bound
3380  if (factor < 0 && objDif > 0)
3381  {
3382  if (lp.upper(j1) >= infinity)
3383  {
3384  MSG_INFO3( spxout << "IMAISM77 LP unbounded" << std::endl; )
3385  return UNBOUNDED;
3386  }
3387 
3388  // fix j1 at upper bound
3389  MSG_INFO3( spxout << "IMAISM63 two duplicate columns " << j1
3390  << ", " << j2
3391  << " first one fixed at upper bound=" << lp.upper(j1) << std::endl; )
3392 
3393  m_hist.append(new FixBoundsPS(lp, j1, lp.upper(j1)));
3394  lp.changeLower(j1, lp.upper(j1));
3395  }
3396 
3397  // fix j1 at lower bound
3398  else if (factor > 0 && objDif < 0)
3399  {
3400  if (lp.lower(j1) <= -infinity)
3401  {
3402  MSG_INFO3( spxout << "IMAISM78 LP unbounded" << std::endl; )
3403  return UNBOUNDED;
3404  }
3405 
3406  // fix j1 at lower bound
3407  MSG_INFO3( spxout << "IMAISM64 two duplicate columns " << j1
3408  << ", " << j2
3409  << " first one fixed at lower bound=" << lp.lower(j1) << std::endl; )
3410 
3411  m_hist.append(new FixBoundsPS(lp, j1, lp.lower(j1)));
3412  lp.changeUpper(j1, lp.lower(j1));
3413  }
3414  }
3415  if (EQrel(lp.lower(j1), lp.upper(j1), feastol()))
3416  {
3417  remCol[j1] = true;
3418  fixAndRemCol[j1] = true;
3419 
3421  }
3422  }
3423  }
3424  }
3425  }
3426  }
3427  }
3428 
3429  for(int j = 0; j < lp.nCols(); ++j)
3430  {
3431  if(fixAndRemCol[j])
3432  {
3433  assert(remCol[j]);
3434 
3435  // correctIdx == false, because the index mapping will be handled by the postsolving in DuplicateColsPS
3436  fixColumn(lp, j, false);
3437  }
3438  }
3439 
3440  // remove all columns by one single method call (more efficient)
3441  const int nColsOld = lp.nCols();
3442  int* perm = new int[nColsOld];
3443 
3444  for(int j = 0; j < nColsOld; ++j)
3445  {
3446  if (remCol[j])
3447  {
3448  perm[j] = -1;
3449  ++remCols;
3450  remNzos += lp.colVector(j).size();
3451  }
3452  else
3453  perm[j] = 0;
3454  }
3455  lp.removeCols(perm);
3456 
3457  for(int j = 0; j < nColsOld; ++j)
3458  {
3459  if (perm[j] >= 0)
3460  m_cIdx[perm[j]] = m_cIdx[j];
3461  }
3462 
3463  DataArray<int> da_perm(nColsOld);
3464  for(int j = 0; j < nColsOld; ++j)
3465  {
3466  da_perm[j] = perm[j];
3467  }
3468 
3469  if (hasDuplicateCol)
3470  {
3471  m_hist.append(new DuplicateColsPS(lp, 0, 0, 1.0, da_perm, false, true));
3472  }
3473 
3474  delete[] perm;
3475 
3476  assert(remCols > 0 || remNzos == 0);
3477 
3478  if (remCols > 0)
3479  {
3480  again = true;
3481  m_remCols += remCols;
3482  m_remNzos += remNzos;
3483 
3484  MSG_INFO2( spxout << "IMAISM65 Main simplifier (duplicate columns) removed "
3485  << remCols << " cols, "
3486  << remNzos << " non-zeros"
3487  << std::endl; )
3488  }
3489  return OKAY;
3490 }
3491 
3492 void SPxMainSM::fixColumn(SPxLP& lp, int j, bool correctIdx)
3493 {
3494  METHOD( "SPxMainSM::fixColumn" );
3495 
3496  assert(EQrel(lp.lower(j), lp.upper(j), feastol()));
3497 
3498  Real lo = lp.lower(j);
3499  const SVector& col = lp.colVector(j);
3500 
3501  assert(NE(lo, infinity) && NE(lo, -infinity));
3502 
3503  MSG_INFO3( spxout << "IMAISM66 fix variable x" << j
3504  << ": lower=" << lp.lower(j)
3505  << " upper=" << lp.upper(j)
3506  << std::endl; )
3507 
3508  if (isNotZero(lo, epsZero()))
3509  {
3510  for(int k = 0; k < col.size(); ++k)
3511  {
3512  int i = col.index(k);
3513 
3514  if (lp.rhs(i) < infinity)
3515  {
3516  Real y = lo * col.value(k);
3517  Real scale = maxAbs(lp.rhs(i), y);
3518 
3519  if (scale < 1.0)
3520  scale = 1.0;
3521 
3522  Real rhs = (lp.rhs(i) / scale) - (y / scale);
3523 
3524  if (isZero(rhs, epsZero()))
3525  rhs = 0.0;
3526  else
3527  rhs *= scale;
3528 
3529  MSG_INFO3( spxout << "IMAISM67 row " << i
3530  << ": rhs=" << rhs
3531  << " (" << lp.rhs(i)
3532  << ") aij=" << col.value(k)
3533  << std::endl; )
3534 
3535  lp.changeRhs(i, rhs);
3536  }
3537  if (lp.lhs(i) > -infinity)
3538  {
3539  Real y = lo * col.value(k);
3540  Real scale = maxAbs(lp.lhs(i), y);
3541 
3542  if (scale < 1.0)
3543  scale = 1.0;
3544 
3545  Real lhs = (lp.lhs(i) / scale) - (y / scale);
3546 
3547  if (isZero(lhs, epsZero()))
3548  lhs = 0.0;
3549  else
3550  lhs *= scale;
3551 
3552  MSG_INFO3( spxout << "IMAISM68 row " << i
3553  << ": lhs=" << lhs
3554  << " (" << lp.lhs(i)
3555  << ") aij=" << col.value(k)
3556  << std::endl; )
3557 
3558  lp.changeLhs(i, lhs);
3559  }
3560  assert(lp.lhs(i) <= lp.rhs(i));
3561  }
3562  }
3563 
3564  m_hist.append(new FixVariablePS(lp, *this, j, lp.lower(j), correctIdx));
3565 }
3566 
3568 {
3569  METHOD( "SPxMainSM::simplify()" );
3570 
3571  m_thesense = lp.spxSense();
3572  m_timeUsed.reset();
3573  m_timeUsed.start();
3574 
3575  m_remRows = 0;
3576  m_remCols = 0;
3577  m_remNzos = 0;
3578  m_chgBnds = 0;
3579  m_chgLRhs = 0;
3580 
3581  Result ret = OKAY;
3582  bool again = true;
3583 
3584  m_prim.reDim(lp.nCols());
3585  m_slack.reDim(lp.nRows());
3586  m_dual.reDim(lp.nRows());
3587  m_redCost.reDim(lp.nCols());
3588 
3589  m_cBasisStat.reSize(lp.nCols());
3590  m_rBasisStat.reSize(lp.nRows());
3591 
3592  m_cIdx.reSize(lp.nCols());
3593  m_rIdx.reSize(lp.nRows());
3594 
3595  if(m_hist.size() > 0)
3596  {
3597  // delete pointers in old m_hist
3598  for(int k = 0; k < m_hist.size(); ++k)
3599  {
3600  delete m_hist[k];
3601  m_hist[k] = 0;
3602  }
3603  m_hist.clear();
3604  }
3605 
3606  m_hist.reSize(0);
3607  m_postsolved = false;
3608 
3609  if( eps < 0.0 )
3610  throw SPxInterfaceException("XMAISM30 Cannot use negative epsilon in simplify().");
3611 
3612  if( feastol < 0.0 )
3613  throw SPxInterfaceException("XMAISM31 Cannot use negative feastol in simplify().");
3614 
3615  if( opttol < 0.0 )
3616  throw SPxInterfaceException("XMAISM32 Cannot use negative opttol in simplify().");
3617 
3618  m_epsilon = eps;
3619  m_feastol = feastol;
3620  m_opttol = opttol;
3621 
3622  for(int i = 0; i < lp.nRows(); ++i)
3623  m_rIdx[i] = i;
3624 
3625  for(int j = 0; j < lp.nCols(); ++j)
3626  m_cIdx[j] = j;
3627 
3628  m_stat.reSize(15);
3629 
3630  for(int k = 0; k < m_stat.size(); ++k)
3631  m_stat[k] = 0;
3632 
3633  // round extreme values (set all values smaller than eps to zero and all values bigger than infinity/5 to infinity)
3634 #if EXTREMES
3635  handleExtremes(lp);
3636 #endif
3637 
3638  // main presolving loop
3639  while(again && ret == OKAY)
3640  {
3641  again = false;
3642 
3643 #if ROWS
3644  if (ret == OKAY)
3645  ret = simplifyRows(lp, again);
3646 #endif
3647 
3648 #if COLS
3649  if (ret == OKAY)
3650  ret = simplifyCols(lp, again);
3651 #endif
3652 
3653 #if DUAL
3654  if (ret == OKAY)
3655  ret = simplifyDual(lp, again);
3656 #endif
3657 
3658 #if DUPLICATE_ROWS
3659  if (ret == OKAY)
3660  ret = duplicateRows(lp, again);
3661 #endif
3662 
3663 #if DUPLICATE_COLS
3664  if (ret == OKAY)
3665  ret = duplicateCols(lp, again);
3666 #endif
3667  }
3668 
3669  // preprocessing detected infeasibility or unboundness
3670  if (ret != OKAY)
3671  return ret;
3672 
3673  MSG_INFO1( spxout << "IMAISM69 Main simplifier removed "
3674  << m_remRows << " rows, "
3675  << m_remCols << " columns, "
3676  << m_remNzos << " nonzeros, "
3677  << m_chgBnds << " col bounds, "
3678  << m_chgLRhs << " row bounds"
3679  << std::endl; )
3680 
3681  MSG_INFO1( spxout << "IMAISM74 Reduced LP has "
3682  << lp.nRows() << " rows "
3683  << lp.nCols() << " columns "
3684  << lp.nNzos() << " nonzeros"
3685  << std::endl; )
3686 
3687  if (lp.nCols() == 0 && lp.nRows() == 0)
3688  {
3689  MSG_INFO1( spxout << "IMAISM70 Main simplifier removed all rows and columns" << std::endl; )
3690  ret = VANISHED;
3691  }
3692 
3693  MSG_INFO2( spxout << "\nIMAISM71 Main simplifier performed:\n"
3694  << m_stat[EMPTY_ROW] << " empty rows\n"
3695  << m_stat[FREE_ROW] << " free rows\n"
3696  << m_stat[SINGLETON_ROW] << " singleton rows\n"
3697  << m_stat[FORCE_ROW] << " forcing rows\n"
3698  << m_stat[EMPTY_COL] << " empty columns\n"
3699  << m_stat[FIX_COL] << " fixed columns\n"
3700  << m_stat[FREE_ZOBJ_COL] << " free columns with zero objective\n"
3701  << m_stat[ZOBJ_SINGLETON_COL] << " singleton columns with zero objective\n"
3702  << m_stat[DOUBLETON_ROW] << " singleton columns combined with a doubleton equation\n"
3703  << m_stat[FREE_SINGLETON_COL] << " free singleton columns\n"
3704  << m_stat[DOMINATED_COL] << " dominated columns\n"
3705  << m_stat[WEAKLY_DOMINATED_COL] << " weakly dominated columns\n"
3706  << m_stat[DUPLICATE_ROW] << " duplicate rows\n"
3707  << m_stat[FIX_DUPLICATE_COL] << " duplicate columns (fixed)\n"
3708  << m_stat[SUB_DUPLICATE_COL] << " duplicate columns (substituted)\n"
3709  << std::endl; );
3710 
3711  m_timeUsed.stop();
3712 
3713  return ret;
3714 }
3715 
3716 void SPxMainSM::unsimplify(const Vector& x, const Vector& y, const Vector& s, const Vector& r,
3717  const SPxSolver::VarStatus rows[], const SPxSolver::VarStatus cols[])
3718 {
3719  assert(x.dim() <= m_prim.dim());
3720  assert(y.dim() <= m_dual.dim());
3721  assert(x.dim() == r.dim());
3722  assert(y.dim() == s.dim());
3723 
3724  METHOD( "SPxMainSM::unsimplify()" );
3725 
3726  // assign values of variables in reduced LP
3727  // NOTE: for maximization problems, we have to switch signs of dual and reduced cost values,
3728  // since simplifier assumes minimization problem
3729  for(int j = 0; j < x.dim(); ++j)
3730  {
3731  m_prim[j] = isZero(x[j], epsZero()) ? 0.0 : x[j];
3732  m_redCost[j] = isZero(r[j], epsZero()) ? 0.0 : (m_thesense == SPxLP::MAXIMIZE ? -r[j] : r[j]);
3733  m_cBasisStat[j] = cols[j];
3734  }
3735  for(int i = 0; i < y.dim(); ++i)
3736  {
3737  m_dual[i] = isZero(y[i], epsZero()) ? 0.0 : (m_thesense == SPxLP::MAXIMIZE ? -y[i] : y[i]);
3738  m_slack[i] = isZero(s[i], epsZero()) ? 0.0 : s[i];
3739  m_rBasisStat[i] = rows[i];
3740  }
3741 
3742  // undo preprocessing
3743  for(int k = m_hist.size()-1; k >= 0; --k)
3744  {
3745  MSG_DEBUG( spxout << "unsimplifying " << m_hist[k]->getName() << "\n" );
3747 
3748  delete m_hist[k];
3749  m_hist[k] = 0;
3750  }
3751 
3752  // for maximization problems, we have to switch signs of dual and reduced cost values back
3754  {
3755  for(int j = 0; j < m_redCost.dim(); ++j)
3756  m_redCost[j] = -m_redCost[j];
3757 
3758  for(int i = 0; i < m_dual.dim(); ++i)
3759  m_dual[i] = -m_dual[i];
3760  }
3761 
3762 #if CHECK_BASIC_DIM
3763  int numBasis = 0;
3764  for(int rs = 0; rs < m_rBasisStat.size(); ++rs)
3765  {
3766  if(m_rBasisStat[rs] == SPxSolver::BASIC)
3767  numBasis ++;
3768  }
3769 
3770  for(int cs = 0; cs < m_cBasisStat.size(); ++cs)
3771  {
3772  if(m_cBasisStat[cs] == SPxSolver::BASIC)
3773  numBasis ++;
3774  }
3775 
3776  if( numBasis != m_rBasisStat.size())
3777  {
3778  throw SPxInternalCodeException("XMAISM26 Dimension doesn't match after this step.");
3779  }
3780 #endif
3781 
3782  m_hist.clear();
3783  m_postsolved = true;
3784 }
3785 } //namespace soplex
3786 
3787 //-----------------------------------------------------------------------------
3788 //Emacs Local Variables:
3789 //Emacs mode:c++
3790 //Emacs c-basic-offset:3
3791 //Emacs tab-width:8
3792 //Emacs indent-tabs-mode:nil
3793 //Emacs End:
3794 //-----------------------------------------------------------------------------
3795