SoPlex Doxygen Documentation
spxsteeppr.cpp
Go to the documentation of this file.
1 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
2 /* */
3 /* This file is part of the class library */
4 /* SoPlex --- the Sequential object-oriented simPlex. */
5 /* */
6 /* Copyright (C) 1996-2012 Konrad-Zuse-Zentrum */
7 /* fuer Informationstechnik Berlin */
8 /* */
9 /* SoPlex is distributed under the terms of the ZIB Academic Licence. */
10 /* */
11 /* You should have received a copy of the ZIB Academic License */
12 /* along with SoPlex; see the file COPYING. If not email to soplex@zib.de. */
13 /* */
14 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
15 
16 //#define DEBUGGING 1
17 
18 #include <assert.h>
19 #include <iostream>
20 
21 #include "spxdefines.h"
22 #include "spxsteeppr.h"
23 #include "random.h"
24 
25 namespace soplex
26 {
27 
28 // #define EQ_PREF 1000
29 
31 {
32  thesolver = 0;
33  prefSetup = 0;
34 }
35 
37 {
38  thesolver = base;
39 
40  if (base)
41  {
42  workVec.clear();
43  workVec.reDim(base->dim());
44  workRhs.clear();
45  workRhs.reDim(base->dim());
46 
47  leavePref.reSize(base->dim());
48  coPref.reSize (base->dim());
49  pref.reSize (base->coDim());
50  prefSetup = 0;
51  }
52 }
53 
55 {
57 
60  setupPrefs(type);
61  setupWeights(type);
62  workVec.clear();
63  workRhs.clear();
64 }
65 
67 {
68  int i;
69  if (setup == DEFAULT)
70  {
71  if (type == SPxSolver::ENTER)
72  {
74  for (i = thesolver->dim() - 1; i >= 0; --i)
75  coPenalty[i] = 2;
77  for (i = thesolver->coDim() - 1; i >= 0; --i)
78  penalty[i] = 1;
79  }
80  else
81  {
82  assert(type == SPxSolver::LEAVE);
84  for (i = thesolver->dim() - 1; i >= 0; --i)
85  {
86  const SPxId id = thesolver->basis().baseId(i);
87  const int n = thesolver->number(id);
88  assert(n >= 0);
89  leavePref[i] = thesolver->isId(id) ? pref[n] : coPref[n];
90  coPenalty[i] = 1.0;
91  }
92  }
93  }
94  else
95  {
96  MSG_INFO1( spxout << "ISTEEP01 initializing steepest edge multipliers" << std::endl; )
97 
98  if (type == SPxSolver::ENTER)
99  {
101  for (i = thesolver->dim() - 1; i >= 0; --i)
102  coPenalty[i] = 1;
104  for (i = thesolver->coDim() - 1; i >= 0; --i)
105  penalty[i] = 1 + thesolver->vector(i).length2();
106  }
107  else
108  {
109  assert(type == SPxSolver::LEAVE);
111  SSVector tmp(thesolver->dim(), thesolver->epsilon());
112  for (i = thesolver->dim() - 1; i >= 0; --i)
113  {
114  const SPxId id = thesolver->basis().baseId(i);
115  const int n = thesolver->number(id);
116  assert(n >= 0);
117  leavePref[i] = thesolver->isId(id) ? pref[n] : coPref[n];
119  coPenalty[i] = tmp.length2();
120  }
121  }
122  }
123 }
124 
126  Real mult,
127  Real /*tie*/,
128  Real /*cotie*/,
129  Real shift,
130  Real coshift)
131 {
132  DataArray<Real>* p;
133  DataArray<Real>* cp;
134  // Real rtie;
135  // Real ctie;
136  Real rshift;
137  Real cshift;
138  int i;
139 
140  if (thesolver->rep() == SPxSolver::COLUMN)
141  {
142  cp = &pref;
143  p = &coPref;
144  // ctie = tie;
145  // rtie = cotie;
146  cshift = shift;
147  rshift = coshift;
148  }
149  else
150  {
151  p = &pref;
152  cp = &coPref;
153  // rtie = tie;
154  // ctie = cotie;
155  rshift = shift;
156  cshift = coshift;
157  }
158 
159  // p[i] += rtie * thesolver->rowVector(i).size() / Real(thesolver->nCols());
160  // p[i] += EQ_PREF * (thesolver->rhs(i) == thesolver->lhs(i));
161  // p[i] += EQ_PREF * (thesolver->rhs(i) >= infinity
162  // && thesolver->lhs(i) <= -infinity);
163  for(i = 0; i < thesolver->nRows(); ++i)
164  (*p)[i] = rshift;
165 
166  // cp[i] += ctie * thesolver->colVector(i).size() / Real(thesolver->nRows());
167  // cp[i] += EQ_PREF * (thesolver->upper(i) == thesolver->lower(i));
168  // cp[i] += EQ_PREF * (thesolver->upper(i) >= infinity
169  // && thesolver->lower(i) <= -infinity);
170  for(i = 0; i < thesolver->nCols(); ++i)
171  (*cp)[i] = cshift;
172 
173  for(i = 0; i < coPref.size(); ++i)
174  coPref[i] *= 1.0 - mult * i;
175 
176  for(i = 0; i < pref.size(); ++i)
177  pref[i] *= 1.0 + mult * i;
178 }
179 
181 {
182  if (tp != prefSetup)
183  {
184  Real mult = 1e-8 / Real(1 + thesolver->dim() + thesolver->coDim());
185 
186  if (tp == SPxSolver::ENTER)
187  setupPrefsX(-mult, -1e-5, -1e-5, 1.0, 1.0);
188  else
189  setupPrefsX(mult, 1e-5, 1e-5, 1.0, 1.0);
190 
191  prefSetup = tp;
192  }
193 }
194 
196 {
197  if (workVec.dim() != thesolver->dim())
198  {
199  DVector tmp = penalty;
200  penalty = coPenalty;
201  coPenalty = tmp;
202 
203  workVec.clear();
205  }
206 }
207 
208 void SPxSteepPR::left4(int n, SPxId id)
209 {
210  assert(thesolver->type() == SPxSolver::LEAVE);
211 
212  // Update preference multiplier in #leavePref#
213  if (thesolver->isId(id))
214  leavePref[n] = pref[thesolver->number(id)];
215  else if (thesolver->isCoId(id))
216  leavePref[n] = coPref[thesolver->number(id)];
217 
218  if (id.isValid())
219  {
220  // Real delta = 0.1; // thesolver->epsilon();
221  Real delta = 0.1 + 1.0 / thesolver->basis().iteration();
222  Real* coPenalty_ptr = coPenalty.get_ptr();
223  const Real* workVec_ptr = workVec.get_const_ptr();
224  const Real* rhoVec = thesolver->fVec().delta().values();
225  Real rhov_1 = 1.0 / rhoVec[n];
226  Real beta_q = thesolver->coPvec().delta().length2() * rhov_1 * rhov_1;
227 
228  //TK: I gave the 0.5 extra, because I am not sure how hard this assert is.
229 #ifndef NDEBUG
230  if (fabs(rhoVec[n]) < theeps * 0.5)
231  {
232  MSG_ERROR( spxout << "WSTEEP04: rhoVec = "
233  << rhoVec[n] << " with smaller absolute value than 0.5*theeps = " << 0.5*theeps << std::endl; )
234  }
235 #endif // NDEBUG
236 
237  // Update #coPenalty# vector
238  const IdxSet& rhoIdx = thesolver->fVec().idx();
239  int len = thesolver->fVec().idx().size();
240 
241  for(int i = 0; i < len; ++i)
242  {
243  int j = rhoIdx.index(i);
244 
245  coPenalty_ptr[j] += rhoVec[j] * (beta_q * rhoVec[j] - 2.0 * rhov_1 * workVec_ptr[j]);
246 
247  if (coPenalty_ptr[j] < delta)
248  coPenalty_ptr[j] = delta; // coPenalty_ptr[j] = delta / (1+delta-x);
249  else if (coPenalty_ptr[j] >= infinity)
250  coPenalty_ptr[j] = 1.0 / theeps;
251  }
252  coPenalty_ptr[n] = beta_q;
253  //@ coPenalty_ptr[n] = 0.999*beta_q;
254  //@ coPenalty_ptr[n] = 1.001*beta_q;
255  }
256 }
257 
259 {
260  assert(isConsistent());
261 
262 #ifdef PARTIAL_PRICING
263  return selectLeavePart();
264 #endif
266  return selectLeaveSparse();
267 
268  const Real* coPenalty_ptr = coPenalty.get_const_ptr();
269  const Real* fTest = thesolver->fTest().get_const_ptr();
270  // const Real* low = thesolver->lbBound();
271  // const Real* up = thesolver->ubBound();
272  const Real* p = leavePref.get_const_ptr();
273 
274  Real best = -infinity;
275  Real x;
276 
277  int lastIdx = -1;
278 
279  for (int i = thesolver->dim() - 1; i >= 0; --i)
280  {
281  x = fTest[i];
282 
283  if (x < -theeps)
284  {
285  /**@todo this was an assert! is an assertion correct?*/
286  // assert(coPenalty_ptr[i] >= theeps);
287  if( coPenalty_ptr[i] < theeps )
288  {
289 #ifdef ENABLE_ADDITIONAL_CHECKS
290  MSG_WARNING( spxout << "WSTEEP02 SPxSteepPR::selectLeaveX(): coPenalty too small ("
291  << coPenalty_ptr[i] << "), assuming epsilon (" << theeps << ")!" << std::endl; )
292 #endif
293 
294  x = x * x / theeps * p[i];
295  }
296  else
297  x = x * x / coPenalty_ptr[i] * p[i];
298 
299  if (x > best)
300  {
301  best = x;
302  lastIdx = i;
303  }
304  }
305  }
306 
307  if (lastIdx >= 0)
308  {
309  assert( thesolver->coPvec().delta().isConsistent() );
311  thesolver->unitVector(lastIdx));
313  assert( thesolver->coPvec().delta().isConsistent() );
316  }
317 
318  return lastIdx;
319 }
320 
322 {
323  const Real* coPenalty_ptr = coPenalty.get_const_ptr();
324  const Real* fTest = thesolver->fTest().get_const_ptr();
325  // const Real* low = thesolver->lbBound();
326  // const Real* up = thesolver->ubBound();
327  const Real* p = leavePref.get_const_ptr();
328 
329  Real best = -infinity;
330  Real x;
331 
332  int oldstart = startpricing;
333  int lastIdx = -1;
334  int count = 0;
335  int dim = thesolver->dim();
336  int end = oldstart + IMPROVEMENT_STEPLENGTH;
337 
338  for (int i = oldstart; i < dim; ++i)
339  {
340  x = fTest[i];
341 
342  if (x < -theeps)
343  {
344  if( coPenalty_ptr[i] < theeps )
345  {
346 #ifdef ENABLE_ADDITIONAL_CHECKS
347  MSG_WARNING( spxout << "WSTEEP02 SPxSteepPR::selectLeavePart(): coPenalty too small ("
348  << coPenalty_ptr[i] << "), assuming epsilon (" << theeps << ")!" << std::endl; )
349 #endif
350 
351  x = x * x / theeps * p[i];
352  }
353  else
354  x = x * x / coPenalty_ptr[i] * p[i];
355 
356  if (x > best * IMPROVEMENT_THRESHOLD)
357  {
358  if( count == 0 )
359  startpricing = (i + 1) % dim;
360  best = x;
361  lastIdx = i;
362  ++count;
363  end = i + IMPROVEMENT_STEPLENGTH;
364  }
365  }
366  if (i >= end && count >= MAX_PRICING_CANDIDATES)
367  goto TERMINATE;
368  }
369  assert(end >= dim);
370  end -= dim;
371 
372  for (int i = 0; i < oldstart; ++i)
373  {
374  x = fTest[i];
375 
376  if (x < -theeps)
377  {
378  if( coPenalty_ptr[i] < theeps )
379  {
380 #ifdef ENABLE_ADDITIONAL_CHECKS
381  MSG_WARNING( spxout << "WSTEEP02 SPxSteepPR::selectLeavePart(): coPenalty too small ("
382  << coPenalty_ptr[i] << "), assuming epsilon (" << theeps << ")!" << std::endl; )
383 #endif
384  x = x * x / theeps * p[i];
385  }
386  else
387  x = x * x / coPenalty_ptr[i] * p[i];
388 
389  if (x > best * IMPROVEMENT_THRESHOLD)
390  {
391  if( count == 0 )
392  startpricing = (i + 1) % dim;
393  best = x;
394  lastIdx = i;
395  ++count;
396  end = i + IMPROVEMENT_STEPLENGTH;
397  }
398  }
399  if (i >= end && count >= MAX_PRICING_CANDIDATES)
400  goto TERMINATE;
401  }
402 
403 TERMINATE:
404  if (lastIdx >= 0)
405  {
406  assert( thesolver->coPvec().delta().isConsistent() );
408  thesolver->unitVector(lastIdx));
410  assert( thesolver->coPvec().delta().isConsistent() );
413  }
414 
415  return lastIdx;
416 }
417 
419 {
420  const Real* coPenalty_ptr = coPenalty.get_const_ptr();
421  const Real* fTest = thesolver->fTest().get_const_ptr();
422  const Real* p = leavePref.get_const_ptr();
423 
424  Real best = -infinity;
425  Real x;
426 
427  int lastIdx = -1;
428  int idx = 0;
429 
430  for (int i = thesolver->infeasibilities.size() - 1; i >= 0; --i)
431  {
432  idx = thesolver->infeasibilities.index(i);
433  x = fTest[idx];
434 
435  if (x < -theeps)
436  {
437  if( coPenalty_ptr[idx] < theeps )
438  {
439 #ifdef ENABLE_ADDITIONAL_CHECKS
440  MSG_WARNING( spxout << "WSTEEP02 SPxSteepPR::selectLeaveSparse(): coPenalty too small ("
441  << coPenalty_ptr[idx] << "), assuming epsilon (" << theeps << ")!" << std::endl; )
442 #endif
443 
444  x = x * x / theeps * p[idx];
445  }
446  else
447  x = x * x / coPenalty_ptr[idx] * p[idx];
448 
449  if (x > best)
450  {
451  best = x;
452  lastIdx = idx;
453  }
454  }
455  else
456  {
458 
459  assert(thesolver->isInfeasible[idx]);
460  thesolver->isInfeasible[idx] = false;
461  }
462  }
463 
464  if (lastIdx >= 0)
465  {
466  assert( thesolver->coPvec().delta().isConsistent() );
468  thesolver->unitVector(lastIdx));
470  assert( thesolver->coPvec().delta().isConsistent() );
473  }
474 
475  return lastIdx;
476 }
477 
478 
479 /* Entering Simplex
480  */
481 void SPxSteepPR::entered4(SPxId /* id */, int n)
482 {
483  assert(thesolver->type() == SPxSolver::ENTER);
484 
485  if (n >= 0 && n < thesolver->dim())
486  {
487  Real delta = 2 + 1.0 / thesolver->basis().iteration();
488  Real* coPenalty_ptr = coPenalty.get_ptr();
489  Real* penalty_ptr = penalty.get_ptr();
490  const Real* workVec_ptr = workVec.get_const_ptr();
491  const Real* pVec = thesolver->pVec().delta().values();
492  const IdxSet& pIdx = thesolver->pVec().idx();
493  const Real* coPvec = thesolver->coPvec().delta().values();
494  const IdxSet& coPidx = thesolver->coPvec().idx();
495  Real xi_p = 1 / thesolver->fVec().delta()[n];
496  int i, j;
497  Real xi_ip, x;
498 
499  assert(thesolver->fVec().delta()[n] > thesolver->epsilon()
500  || thesolver->fVec().delta()[n] < -thesolver->epsilon());
501 
502  for (j = coPidx.size() - 1; j >= 0; --j)
503  {
504  i = coPidx.index(j);
505  xi_ip = xi_p * coPvec[i];
506  x = coPenalty_ptr[i] += xi_ip * (xi_ip * pi_p - 2 * workVec_ptr[i]);
507  /*
508  if(x < 1)
509  coPenalty_ptr[i] = 1 / (2-x);
510  */
511  if (x < delta)
512  coPenalty_ptr[i] = delta;
513  // coPenalty_ptr[i] = 1;
514  else if (x > infinity)
515  coPenalty_ptr[i] = 1 / thesolver->epsilon();
516  }
517 
518  for (j = pIdx.size() - 1; j >= 0; --j)
519  {
520  i = pIdx.index(j);
521  xi_ip = xi_p * pVec[i];
522  x = penalty_ptr[i] += xi_ip * (xi_ip * pi_p - 2.0 * (thesolver->vector(i) * workVec));
523  /*
524  if(x < 1)
525  penalty_ptr[i] = 1 / (2-x);
526  */
527  if (x < delta)
528  penalty_ptr[i] = delta;
529  // penalty_ptr[i] = 1;
530  else if (x > infinity)
531  penalty_ptr[i] = 1.0 / thesolver->epsilon();
532  }
533  }
534 
535  /*@
536  if(thesolver->isId(id))
537  penalty[ thesolver->number(id) ] *= 1.0001;
538  else if(thesolver->isCoId(id))
539  coPenalty[ thesolver->number(id) ] *= 1.0001;
540  */
541 
542 }
543 
545 {
546  assert(thesolver != 0);
547  SPxId enterId;
548 
549  enterId = selectEnterX();
550  assert(isConsistent());
551 
552  if (enterId.isValid())
553  {
554  SSVector& delta = thesolver->fVec().delta();
555 
556  thesolver->basis().solve4update(delta, thesolver->vector(enterId));
557 
558  // workRhs.epsilon = 0.1*accuracy;
560  workRhs.setup_and_assign(delta);
561  pi_p = 1 + delta.length2();
562 
564  }
565  return enterId;
566 }
567 
569 {
570  SPxId enterId;
571  SPxId enterIdCo;
572  Real best;
573  Real bestCo;
574 
575  best = -infinity;
576  bestCo = -infinity;
577  enterId = (thesolver->sparsePricingEnter) ? selectEnterSparseDim(best, enterId) : selectEnterDenseDim(best, enterId);
578  enterIdCo = (thesolver->sparsePricingEnterCo) ? selectEnterSparseCoDim(bestCo, enterId) : selectEnterDenseCoDim(bestCo, enterId);
579 
580  // prefer slack indices to reduce nonzeros in basis matrix
581  if( enterId.isValid() && (best > SPARSITY_TRADEOFF * bestCo || !enterIdCo.isValid()) )
582  return enterId;
583  else
584  return enterIdCo;
585 }
586 
587 
589 {
590  const Real* cp = coPref.get_const_ptr();
591  const Real* coTest = thesolver->coTest().get_const_ptr();
592  const Real* coPenalty_ptr = coPenalty.get_const_ptr();
593 
594  int idx;
595  Real x;
596  Real coPen;
597  Real coPref;
598 
599  for (int i = thesolver->infeasibilities.size() -1; i >= 0; --i)
600  {
601  idx = thesolver->infeasibilities.index(i);
602  x = coTest[idx];
603 
604  if (x < -theeps)
605  {
606  coPen = coPenalty_ptr[idx];
607  x = x * x / coPen;
608  coPref = cp[idx];
609  x = x * coPref;
610  // x *= 1 + cp[i];
611  if (x > best)
612  {
613  best = x;
614  enterId = thesolver->coId(idx);
615  }
616  }
617  else
618  {
620 
621  assert(thesolver->isInfeasible[idx]);
622  thesolver->isInfeasible[idx] = false;
623  }
624  }
625  return enterId;
626 }
627 
629 {
630  const Real* p = pref.get_const_ptr();
631  const Real* test = thesolver->test().get_const_ptr();
632  const Real* penalty_ptr = penalty.get_const_ptr();
633 
634  int idx;
635  Real x;
636  Real pen;
637  Real pref;
638 
639  for (int i = thesolver->infeasibilitiesCo.size() -1; i >= 0; --i)
640  {
642  x = test[idx];
643 
644  if (x < -theeps)
645  {
646  pen = penalty_ptr[idx];
647  x = x * x / pen;
648  pref = p[idx];
649  x = x * pref;
650  // x *= 1 + p[i];
651  if (x > best)
652  {
653  best = x;
654  enterId = thesolver->id(idx);
655  }
656  }
657  else
658  {
660 
661  assert(thesolver->isInfeasibleCo[idx]);
662  thesolver->isInfeasibleCo[idx] = false;
663  }
664  }
665  return enterId;
666 }
667 
669 {
670  const Real* cp = coPref.get_const_ptr();
671  const Real* coTest = thesolver->coTest().get_const_ptr();
672  const Real* coPenalty_ptr = coPenalty.get_const_ptr();
673 
674  Real x;
675 
676  for (int i = 0, end = thesolver->dim(); i < end; ++i)
677  {
678  x = coTest[i];
679  if (x < -theeps)
680  {
681  x *= x / coPenalty_ptr[i];
682  x *= cp[i];
683  // x *= 1 + cp[i];
684  if (x > best)
685  {
686  best = x;
687  enterId = thesolver->coId(i);
688  }
689  }
690  }
691  return enterId;
692 }
693 
695 {
696  const Real* p = pref.get_const_ptr();
697  const Real* test = thesolver->test().get_const_ptr();
698  const Real* penalty_ptr = penalty.get_const_ptr();
699 
700  Real x;
701 
702  for(int i = 0, end = thesolver->coDim(); i < end; ++i)
703  {
704  x = test[i];
705  if (x < -theeps)
706  {
707  x *= x / penalty_ptr[i];
708  x *= p[i];
709  // x *= 1 + p[i];
710  if (x > best)
711  {
712  best = x;
713  enterId = thesolver->id(i);
714  }
715  }
716  }
717  return enterId;
718 }
719 
720 
722 {
723  n = penalty.dim();
724  pref.reSize (thesolver->coDim());
726 
727  if (thesolver->type() == SPxSolver::ENTER)
728  {
730  for (; n < penalty.dim(); ++n)
731  penalty[n] = 2;
732  }
733  prefSetup = 0;
734 }
735 
737 {
738  n = coPenalty.dim();
739 
741  coPref.reSize (thesolver->dim());
743 
744  workVec.reDim (thesolver->dim());
746  for (; n < coPenalty.dim(); ++n)
747  coPenalty[n] = 1;
748  prefSetup = 0;
749 }
750 
752 {
753  assert(thesolver != 0);
754  penalty[i] = penalty[penalty.dim()];
756  prefSetup = 0;
757 }
758 
759 void SPxSteepPR::removedVecs(const int perm[])
760 {
761  assert(thesolver != 0);
762  if (thesolver->type() == SPxSolver::ENTER)
763  {
764  int i;
765  int j = penalty.dim();
766  for (i = 0; i < j; ++i)
767  if (perm[i] >= 0)
768  penalty[perm[i]] = penalty[i];
769  }
771  prefSetup = 0;
772 }
773 
775 {
776  assert(thesolver != 0);
779  prefSetup = 0;
780 }
781 
782 void SPxSteepPR::removedCoVecs(const int perm[])
783 {
784  assert(thesolver != 0);
785  int i;
786  int j = coPenalty.dim();
787  for (i = 0; i < j; ++i)
788  if (perm[i] >= 0)
789  coPenalty[perm[i]] = coPenalty[i];
791  prefSetup = 0;
792 }
793 
795 {
796 #ifdef ENABLE_CONSISTENCY_CHECKS
797  if (thesolver != 0 && thesolver->type() == SPxSolver::LEAVE && setup == EXACT)
798  {
799  int i;
800  SSVector tmp(thesolver->dim(), thesolver->epsilon());
801  Real x;
802  for (i = thesolver->dim() - 1; i >= 0; --i)
803  {
805  x = coPenalty[i] - tmp.length2();
806  if (x > thesolver->leavetol() || -x > thesolver->leavetol())
807  {
808  MSG_ERROR( spxout << "ESTEEP03 x[" << i << "] = " << x << std::endl; )
809  }
810  }
811  }
812 
813  if (thesolver != 0 && thesolver->type() == SPxSolver::ENTER)
814  {
815  int i;
816  for (i = thesolver->dim() - 1; i >= 0; --i)
817  if (coPenalty[i] < thesolver->epsilon())
818  return MSGinconsistent("SPxSteepPR");
819 
820  for (i = thesolver->coDim() - 1; i >= 0; --i)
821  if (penalty[i] < thesolver->epsilon())
822  return MSGinconsistent("SPxSteepPR");
823  }
824 #endif
825 
826  return true;
827 }
828 } // namespace soplex
829 
830 //-----------------------------------------------------------------------------
831 //Emacs Local Variables:
832 //Emacs mode:c++
833 //Emacs c-basic-offset:3
834 //Emacs tab-width:8
835 //Emacs indent-tabs-mode:nil
836 //Emacs End:
837 //-----------------------------------------------------------------------------