SoPlex Doxygen Documentation
spxvecs.cpp
Go to the documentation of this file.
1 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
2 /* */
3 /* This file is part of the class library */
4 /* SoPlex --- the Sequential object-oriented simPlex. */
5 /* */
6 /* Copyright (C) 1996-2012 Konrad-Zuse-Zentrum */
7 /* fuer Informationstechnik Berlin */
8 /* */
9 /* SoPlex is distributed under the terms of the ZIB Academic Licence. */
10 /* */
11 /* You should have received a copy of the ZIB Academic License */
12 /* along with SoPlex; see the file COPYING. If not email to soplex@zib.de. */
13 /* */
14 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
15 
16 #include <assert.h>
17 #include <iostream>
18 
19 #include "spxdefines.h"
20 #include "spxsolver.h"
21 #include "exceptions.h"
22 
23 namespace soplex
24 {
25 /** Initialize Vectors
26 
27  Computing the right hand side vector for the feasibility vector depends on
28  the chosen representation and type of the basis.
29 
30  In columnwise case, |theFvec| = \f$x_B = A_B^{-1} (- A_N x_N)\f$, where \f$x_N\f$
31  are either upper or lower bounds for the nonbasic variables (depending on
32  the variables |Status|). If these values remain unchanged throughout the
33  simplex algorithm, they may be taken directly from LP. However, in the
34  entering type algorith they are changed and, hence, retreived from the
35  column or row upper or lower bound vectors.
36 
37  In rowwise case, |theFvec| = \f$\pi^T_B = (c^T - 0^T A_N) A_B^{-1}\f$. However,
38  this applies only to leaving type algorithm, where no bounds on dual
39  variables are altered. In entering type algorithm they are changed and,
40  hence, retreived from the column or row upper or lower bound vectors.
41  */
43 {
44  METHOD( "SPxSolver::computeFrhs()" );
45 
46  if (rep() == COLUMN)
47  {
48  theFrhs->clear();
49 
50  if (type() == LEAVE)
51  {
53 
54  for(int i = 0; i < nRows(); i++)
55  {
56  Real x;
57 
59 
60  if (!isBasic(stat))
61  {
62  switch (stat)
63  {
64  // columnwise cases:
66  continue;
67 
69  assert(lhs(i) == rhs(i));
70  //lint -fallthrough
72  x = rhs(i);
73  break;
75  x = lhs(i);
76  break;
77 
78  default:
79  MSG_ERROR( spxout << "ESVECS01 ERROR: "
80  << "inconsistent basis must not happen!"
81  << std::endl; )
82  throw SPxInternalCodeException("XSVECS01 This should never happen.");
83  }
84  assert(x < infinity);
85  assert(x > -infinity);
86  (*theFrhs)[i] += x; // slack !
87  }
88  }
89  }
90  else
91  {
94  }
95  }
96  else
97  {
98  assert(rep() == ROW);
99 
100  if (type() == ENTER)
101  {
102  theFrhs->clear();
105  *theFrhs += maxObj();
106  }
107  else
108  *theFrhs = maxObj();
109  }
110 }
111 
113 {
114  METHOD( "SPxSolver::computeFrhsXtra()" );
115 
116  assert(rep() == COLUMN);
117  assert(type() == LEAVE);
118 
119  for (int i = 0; i < nCols(); ++i)
120  {
122 
123  if (!isBasic(stat))
124  {
125  Real x;
126 
127  switch (stat)
128  {
129  // columnwise cases:
131  continue;
132 
134  assert(SPxLP::lower(i) == SPxLP::upper(i));
135  //lint -fallthrough
137  x = SPxLP::upper(i);
138  break;
140  x = SPxLP::lower(i);
141  break;
142 
143  default:
144  MSG_ERROR( spxout << "ESVECS02 ERROR: "
145  << "inconsistent basis must not happen!"
146  << std::endl; )
147  throw SPxInternalCodeException("XSVECS02 This should never happen.");
148  }
149  assert(x < infinity);
150  assert(x > -infinity);
151 
152  if (x != 0.0)
153  theFrhs->multAdd(-x, vector(i));
154  }
155  }
156 }
157 
158 
159 /** This methods subtracts \f$A_N x_N\f$ or \f$\pi_N^T A_N\f$ from |theFrhs| as
160  specified by the |Status| of all nonbasic variables. The values of \f$x_N\f$ or
161  \f$\pi_N\f$ are taken from the passed arrays.
162  */
164  const Vector& ufb, ///< upper feasibility bound for variables
165  const Vector& lfb) ///< lower feasibility bound for variables
166 {
167  METHOD( "SPxSolver::computeFrhs1()" );
168 
169  const SPxBasis::Desc& ds = desc();
170 
171  for (int i = 0; i < coDim(); ++i)
172  {
173  SPxBasis::Desc::Status stat = ds.status(i);
174 
175  if (!isBasic(stat))
176  {
177  Real x;
178 
179  switch (stat)
180  {
184  continue;
185 
188  x = ufb[i];
189  break;
192  x = lfb[i];
193  break;
194 
196  assert(lfb[i] == ufb[i]);
198  x = lfb[i];
199  break;
200 
201  default:
202  MSG_ERROR( spxout << "ESVECS03 ERROR: "
203  << "inconsistent basis must not happen!"
204  << std::endl; )
205  throw SPxInternalCodeException("XSVECS04 This should never happen.");
206  }
207  assert(x < infinity);
208  assert(x > -infinity);
209 
210  if (x != 0.0)
211  theFrhs->multAdd(-x, vector(i));
212  }
213  }
214 }
215 
216 /** This methods subtracts \f$A_N x_N\f$ or \f$\pi_N^T A_N\f$ from |theFrhs| as
217  specified by the |Status| of all nonbasic variables. The values of
218  \f$x_N\f$ or \f$\pi_N\f$ are taken from the passed arrays.
219  */
221  const Vector& coufb, ///< upper feasibility bound for covariables
222  const Vector& colfb) ///< lower feasibility bound for covariables
223 {
224  METHOD( "SPxSolver::computeFrhs2()" );
225  const SPxBasis::Desc& ds = desc();
226 
227  for(int i = 0; i < dim(); ++i)
228  {
229  SPxBasis::Desc::Status stat = ds.coStatus(i);
230 
231  if (!isBasic(stat))
232  {
233  Real x;
234 
235  switch (stat)
236  {
240  continue;
241 
242  case SPxBasis::Desc::P_ON_LOWER : // negative slack bounds!
244  x = coufb[i];
245  break;
246  case SPxBasis::Desc::P_ON_UPPER : // negative slack bounds!
248  x = colfb[i];
249  break;
252 
253  if (colfb[i] != coufb[i])
254  {
255  MSG_WARNING( spxout << "WSVECS04 Frhs2: " << stat << " "
256  << colfb[i] << " " << coufb[i]
257  << " shouldn't be" << std::endl; )
258  }
259  //assert(colfb[i] == coufb[i]);
260  x = colfb[i];
261  break;
262 
263  default:
264  MSG_ERROR( spxout << "ESVECS05 ERROR: "
265  << "inconsistent basis must not happen!"
266  << std::endl; )
267  throw SPxInternalCodeException("XSVECS05 This should never happen.");
268  }
269  assert(x < infinity);
270  assert(x > -infinity);
271 
272  (*theFrhs)[i] -= x; // This is a slack, so no need to multiply a vector.
273  }
274  }
275 }
276 
277 /** Computing the right hand side vector for |theCoPvec| depends on
278  the type of the simplex algorithm. In entering algorithms, the
279  values are taken from the inequality's right handside or the
280  column's objective value.
281 
282  In contrast to this leaving algorithms take the values from vectors
283  |theURbound| and so on.
284 
285  We reflect this difference by providing two pairs of methods
286  |computeEnterCoPrhs(n, stat)| and |computeLeaveCoPrhs(n, stat)|. The first
287  pair operates for entering algorithms, while the second one is intended for
288  leaving algorithms. The return value of these methods is the right hand
289  side value for the \f$n\f$-th row or column id, respectively, if it had the
290  passed |Status| for both.
291 
292  Both methods are again split up into two methods named |...4Row(i,n)| and
293  |...4Col(i,n)|, respectively. They do their job for the |i|-th basis
294  variable, being the |n|-th row or column.
295 */
297 {
298  METHOD( "SPxSolver::computeEnterCoPrhs4Row()" );
299  assert(baseId(i).isSPxRowId());
300  assert(number(SPxRowId(baseId(i))) == n);
301 
302  switch (desc().rowStatus(n))
303  {
304  // rowwise representation:
306  assert(lhs(n) > -infinity);
307  assert(rhs(n) == lhs(n));
308  //lint -fallthrough
310  assert(rep() == ROW);
311  assert(rhs(n) < infinity);
312  (*theCoPrhs)[i] = rhs(n);
313  break;
315  assert(rep() == ROW);
316  assert(lhs(n) > -infinity);
317  (*theCoPrhs)[i] = lhs(n);
318  break;
319 
320  // columnwise representation:
321  // slacks must be left 0!
322  default:
323  (*theCoPrhs)[i] = 0;
324  break;
325  }
326 }
327 
329 {
330  METHOD( "SPxSolver::computeEnterCoPrhs4Col()" );
331  assert(baseId(i).isSPxColId());
332  assert(number(SPxColId(baseId(i))) == n);
333  switch (desc().colStatus(n))
334  {
335  // rowwise representation:
337  assert(SPxLP::upper(n) == SPxLP::lower(n));
338  assert(SPxLP::lower(n) > -infinity);
339  //lint -fallthrough
341  assert(rep() == ROW);
342  assert(SPxLP::upper(n) < infinity);
343  (*theCoPrhs)[i] = SPxLP::upper(n);
344  break;
346  assert(rep() == ROW);
347  assert(SPxLP::lower(n) > -infinity);
348  (*theCoPrhs)[i] = SPxLP::lower(n);
349  break;
350 
351  // columnwise representation:
357  assert(rep() == COLUMN);
358  (*theCoPrhs)[i] = maxObj(n);
359  break;
360 
361  default: // variable left 0
362  (*theCoPrhs)[i] = 0;
363  break;
364  }
365 }
366 
368 {
369  METHOD( "SPxSolver::computeEnterCoPrhs()" );
370  assert(type() == ENTER);
371 
372  for (int i = dim() - 1; i >= 0; --i)
373  {
374  SPxId l_id = baseId(i);
375  if (l_id.isSPxRowId())
377  else
379  }
380 }
381 
383 {
384  METHOD( "SPxSolver::computeLeaveCoPrhs4Row()" );
385  assert(baseId(i).isSPxRowId());
386  assert(number(SPxRowId(baseId(i))) == n);
387  switch (desc().rowStatus(n))
388  {
391  assert(theLRbound[n] > -infinity);
392  assert(theURbound[n] == theLRbound[n]);
393  //lint -fallthrough
396  assert(theURbound[n] < infinity);
397  (*theCoPrhs)[i] = theURbound[n];
398  break;
399 
402  assert(theLRbound[n] > -infinity);
403  (*theCoPrhs)[i] = theLRbound[n];
404  break;
405 
406  default:
407  (*theCoPrhs)[i] = 0;
408  break;
409  }
410 }
411 
413 {
414  METHOD( "SPxSolver::computeLeaveCoPrhs4Col()" );
415  assert(baseId(i).isSPxColId());
416  assert(number(SPxColId(baseId(i))) == n);
417  switch (desc().colStatus(n))
418  {
422  assert(theLCbound[n] > -infinity);
423  assert(theUCbound[n] == theLCbound[n]);
424  //lint -fallthrough
427  assert(theUCbound[n] < infinity);
428  (*theCoPrhs)[i] = theUCbound[n];
429  break;
432  assert(theLCbound[n] > -infinity);
433  (*theCoPrhs)[i] = theLCbound[n];
434  break;
435 
436  default:
437  (*theCoPrhs)[i] = maxObj(n);
438  // (*theCoPrhs)[i] = 0;
439  break;
440  }
441 }
442 
444 {
445  METHOD( "SPxSolver::computeLeaveCoPrhs()" );
446  assert(type() == LEAVE);
447 
448  for (int i = dim() - 1; i >= 0; --i)
449  {
450  SPxId l_id = baseId(i);
451  if (l_id.isSPxRowId())
453  else
455  }
456 }
457 
458 
459 /** When computing the copricing vector, we expect the pricing vector to be
460  setup correctly. Then computing the copricing vector is nothing but
461  computing all scalar products of the pricing vector with the vectors of the
462  LPs constraint matrix.
463  */
465 {
466  METHOD( "SPxSolver::computePvec()" );
467  int i;
468 
469  for (i = coDim() - 1; i >= 0; --i)
470  (*thePvec)[i] = vector(i) * (*theCoPvec);
471 }
472 
474 {
475  METHOD( "SPxSolver::setupPupdate()" );
476  SSVector& p = thePvec->delta();
477  SSVector& c = theCoPvec->delta();
478 
479  if (c.isSetup())
480  {
481  if (c.size() < 0.95 * theCoPvec->dim())
483  else
484  p.assign2product(c, *thevectors);
485  }
486  else
487  {
489  }
490 
491  p.setup();
492 }
493 
495 {
496  METHOD( "SPxSolver::doPupdate()" );
497  theCoPvec->update();
498  if (pricing() == FULL)
499  {
500  // thePvec->delta().setup();
501  thePvec->update();
502  }
503 }
504 } // namespace soplex
505 
506 //-----------------------------------------------------------------------------
507 //Emacs Local Variables:
508 //Emacs mode:c++
509 //Emacs c-basic-offset:3
510 //Emacs tab-width:8
511 //Emacs indent-tabs-mode:nil
512 //Emacs End:
513 //-----------------------------------------------------------------------------