SoPlex Doxygen Documentation
svector.h
Go to the documentation of this file.
1 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
2 /* */
3 /* This file is part of the class library */
4 /* SoPlex --- the Sequential object-oriented simPlex. */
5 /* */
6 /* Copyright (C) 1996-2012 Konrad-Zuse-Zentrum */
7 /* fuer Informationstechnik Berlin */
8 /* */
9 /* SoPlex is distributed under the terms of the ZIB Academic Licence. */
10 /* */
11 /* You should have received a copy of the ZIB Academic License */
12 /* along with SoPlex; see the file COPYING. If not email to soplex@zib.de. */
13 /* */
14 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
15 
16 /**@file svector.h
17  * @brief Sparse vectors.
18  */
19 #ifndef _SVECTOR_H_
20 #define _SVECTOR_H_
21 
22 #include <iostream>
23 #include <assert.h>
24 #include <math.h>
25 
26 #include "spxdefines.h"
27 #include "vector.h"
28 
29 namespace soplex
30 {
31 /**@brief Sparse vectors.
32  @ingroup Algebra
33 
34  Class SVector provides packed sparse vectors. Such are a sparse vectors,
35  with a storage scheme that keeps all data in one contiguous block of memory.
36  This is best suited for using them for parallel computing on a distributed
37  memory multiprocessor.
38 
39  SVector does not provide any memory management (this will be done by class
40  DSVector). This means, that the constructor of SVector expects memory
41  where to save the nonzeros. Further, adding nonzeros to an SVector may fail
42  if no more memory is available for saving them (see also DSVector).
43 
44  When nonzeros are added to an SVector, they are appended to the set of
45  nonzeros, i.e., they recieve numbers size(), size()+1 ... . An SVector
46  can hold atmost max() nonzeros, where max() is given in the constructor.
47  When removing nonzeros, the remaining nonzeros are renumbered. However,
48  only the numbers greater than the number of the first removed nonzero are
49  affected.
50 
51  The following mathematical operations are provided by class SVector
52  (SVector \p a, \p b, \p c; Real \p x):
53 
54  <TABLE>
55  <TR><TD>Operation</TD><TD>Description </TD><TD></TD>&nbsp;</TR>
56  <TR><TD>\c -= </TD><TD>subtraction </TD><TD>\c a \c -= \c b </TD></TR>
57  <TR><TD>\c += </TD><TD>addition </TD><TD>\c a \c += \c b </TD></TR>
58  <TR><TD>\c * </TD><TD>skalar product</TD>
59  <TD>\c x = \c a \c * \c b </TD></TR>
60  <TR><TD>\c *= </TD><TD>scaling </TD><TD>\c a \c *= \c x </TD></TR>
61  <TR><TD>maxAbs() </TD><TD>infinity norm </TD>
62  <TD>\c a.maxAbs() == \f$\|a\|_{\infty}\f$ </TD></TR>
63  <TR><TD>length() </TD><TD>eucledian norm</TD>
64  <TD>\c a.length() == \f$\sqrt{a^2}\f$ </TD></TR>
65  <TR><TD>length2()</TD><TD>square norm </TD>
66  <TD>\c a.length2() == \f$a^2\f$ </TD></TR>
67  </TABLE>
68 
69  Operators \c += and \c -= should be used with caution, since no efficient
70  implementation is available. One should think of assigning the left handside
71  vector to a dense Vector first and perform the addition on it. The same
72  applies to the scalar product \c *.
73 
74  There are two numberings of the nonzeros of an SVector. First, an SVector
75  is supposed to act like a linear algebra Vector. An \em index refers to
76  this view of an SVector: operator[]() is provided which returns the value
77  at the given index of the vector, i.e., 0 for all indices which are not in
78  the set of nonzeros. The other view of SVector%s is that of a set of
79  nonzeros. The nonzeros are numbered from 0 to size()-1.
80  The methods index(int n) and value(int n)
81  allow to access the index and value of the \p n 'th nonzero.
82  \p n is referred to as the \em number of a nonzero.
83 
84  @todo SVector should get a new implementation.
85  The trick to shift the storage by one element and then
86  store the actual and maximum size of the vector
87  in m_elem[-1] is ugly.
88  Also there maybe a lot of memory lost due to padding the Element
89  structure. A better idea seems to be
90  class SVector { int size; int used; int* idx; Real* val; };
91  which for several reasons could be faster or slower.
92  If SVector is changed, also DSVector and SVSet have to be modified.
93 */
94 class SVector
95 {
96  friend class Vector;
97  friend class SSVector;
98  friend std::ostream& operator<<(std::ostream& os, const SVector& v);
99 
100 public:
101 
102  //-------------------------------------------
103  /**@name Types */
104  //@{
105  /// Sparse vector nonzero element.
106  /** SVector keep their nonzeros in an array of Element%s providing
107  * members for saving the nonzero's index and value.
108  */
109  struct Element
110  {
111  Real val; ///< Value of nonzero element
112  int idx; ///< Index of nonzero element
113  };
114  //@}
115 
116 private:
117 
118  //-------------------------------------------
119  /**@name Data */
120  //@{
121  /** An SVector keeps its data in an array of Element%s. The size and
122  * maximum number of elements allowed is stored in the -1st Element
123  * in its members \ref Element::idx "idx" and \ref Element::val
124  * "val", respectively.
125  */
126  Element *m_elem; ///< Array of Element%s.
127  //@}
128 
129 public:
130 
131  //-------------------------------------------
132  /**@name Modification */
133  //@{
134  /// append one nonzero \p (i,v).
135  void add(int i, Real v)
136  {
137  assert( m_elem != 0 );
138  int n = size();
139  assert(n < max());
140 
141  m_elem[n].idx = i;
142  m_elem[n].val = v;
143  set_size( n + 1 );
144  assert(size() <= max());
145  }
146 
147  /// append nonzeros of \p sv.
148  void add(const SVector& sv)
149  {
150  add(sv.size(), sv.m_elem);
151  }
152 
153  /// append \p n nonzeros.
154  void add(int n, const int i[], const Real v[]);
155 
156  /// append \p n nonzeros.
157  void add(int n, const Element e[]);
158 
159  /// remove nonzeros \p n thru \p m.
160  void remove(int n, int m);
161 
162  /// remove \p n 'th nonzero.
163  void remove(int n)
164  {
165  assert(n < size() && n >= 0);
166  set_size( size() - 1 );
167  m_elem[n] = m_elem[size()];
168  }
169  /// remove all indices.
170  void clear()
171  {
172  set_size(0);
173  }
174  /// sort nonzeros to increasing indices.
175  void sort();
176  //@}
177 
178 
179  //-------------------------------------------
180  /**@name Inquiry */
181  //@{
182  /// number of used indices.
183  int size() const
184  {
185  if( m_elem != 0 )
186  return m_elem[ -1].idx;
187  else
188  return 0;
189  }
190 
191  /// maximal number indices.
192  int max() const
193  {
194  if( m_elem != 0 )
195  return int(m_elem[ -1].val);
196  else
197  return 0;
198  }
199 
200  /// dimension of the vector: maximal index + 1
201  int dim() const;
202 
203  /// Number of index \p i.
204  /** @return The number of the first index \p i. If no index \p i
205  * is available in the IdxSet, -1 is returned. Otherwise,
206  * index(number(i)) == i holds.
207  */
208  int number(int i) const
209  {
210  if( m_elem != 0 )
211  {
212  int n = size();
213  Element* e = &(m_elem[n]);
214  while (n--)
215  {
216  --e;
217  if (e->idx == i)
218  return n;
219  }
220  }
221  return -1;
222  }
223 
224  /// get value to index \p i.
225  Real operator[](int i) const
226  {
227  int n = number(i);
228  if (n >= 0)
229  return m_elem[n].val;
230  return 0;
231  }
232 
233  /// get reference to the \p n 'th nonzero element.
234  Element& element(int n)
235  {
236  assert(n >= 0 && n < max());
237  return m_elem[n];
238  }
239 
240  /// get \p n 'th nonzero element.
241  const Element& element(int n) const
242  {
243  assert(n >= 0 && n < size());
244  return m_elem[n];
245  }
246 
247  /// get reference to index of \p n 'th nonzero.
248  int& index(int n)
249  {
250  assert(n >= 0 && n < size());
251  return m_elem[n].idx;
252  }
253 
254  /// get index of \p n 'th nonzero.
255  int index(int n) const
256  {
257  assert(n >= 0 && n < size());
258  return m_elem[n].idx;
259  }
260 
261  /// get reference to value of \p n 'th nonzero.
262  Real& value(int n)
263  {
264  assert(n >= 0 && n < size());
265  return m_elem[n].val;
266  }
267 
268  /// get value of \p n 'th nonzero.
269  Real value(int n) const
270  {
271  assert(n >= 0 && n < size());
272  return m_elem[n].val;
273  }
274  //@}
275 
276 
277  //-------------------------------------------
278  /**@name Mathematical Operations */
279  //@{
280  /// infinity norm.
281  Real maxAbs() const;
282 
283  /// the absolut smalest element in the vector.
284  Real minAbs() const;
285 
286  /// eucledian norm.
287  Real length() const
288  {
289  return sqrt(length2());
290  }
291 
292  /// squared eucledian norm.
293  Real length2() const;
294 
295  /// scale with \p x.
296  SVector& operator*=(Real x);
297 
298  /// inner product.
299  Real operator*(const Vector& w) const
300  {
301  Real x = 0;
302  int n = size();
303  Element* e = m_elem;
304 
305  while (n--)
306  {
307  x += e->val * w[e->idx];
308  e++;
309  }
310  return x;
311  }
312  //@}
313 
314  //-------------------------------------------
315  /**@name Constructors / destructors */
316  //@{
317  /// assignment operator from semi sparse vector.
318  SVector& operator=(const SSVector& sv);
319  /// assignment operator.
320  SVector& operator=(const SVector& sv);
321  /// assignment operator from vector.
322  SVector& operator=(const Vector& sv);
323  /// default constructor.
324  /** The constructor expects one memory block where to store the nonzero
325  * elements. This must be passed to the constructor, where the \em number
326  * of Element%s needs that fit into the memory must be given and a
327  * pointer to the beginning of the memory block. Once this memory has
328  * been passed, it shall not be modified until the SVector is no
329  * longer used. Note that when a memory block for \p n, say, Element%s
330  * has been passed, only \p n-1 are available for actually storing
331  * nonzeros. The remaining one is used for bookkeeping purposes.
332  */
333  explicit
334  SVector(int n = 0, Element* p_mem = 0)
335  {
336  setMem(n, p_mem);
337  }
338  /// destructor
340  {}
341  //@}
342 
343  //-------------------------------------------
344  /**@name Memory */
345  //@{
346  /// get pointer to internal memory.
347  Element* mem() const
348  {
349  return m_elem - 1;
350  }
351  /// set the size of the Vector,
352  void set_size(int s)
353  {
354  assert(m_elem != 0);
355  m_elem[ -1].idx = s;
356  }
357  /// set the maximum number of nonzeros in the Vector.
358  void set_max(int m)
359  {
360  assert(m_elem != 0);
361  m_elem[ -1].val = m;
362  }
363  /// set the memory area where the nonzeros will be stored.
364  void setMem(int n, Element* elmem)
365  {
366  assert(n >= 0);
367 
368  if (n > 0)
369  {
370  assert(elmem != 0);
371  elmem->val = 0; // for purify to shut up
372  m_elem = &(elmem[1]);
373  set_size( 0 );
374  set_max ( n - 1 );
375  }
376  else
377  m_elem = 0;
378  }
379  //@}
380 
381  //-------------------------------------------
382  /**@name Miscellaneous*/
383  //@{
384  /// consistency check.
385  bool isConsistent() const;
386  //@}
387 };
388 
389 //---------------------------------------------------------------------
390 // Vector methods involving SVectors
391 //---------------------------------------------------------------------
392 
393 /// multiply Vector with \p and add a SVector.
394 /** This is located in svector.h because it should be inlined and
395  * because of the cross dependencies of Vector and SVector.
396  * @todo Can we move this function to a better place?
397  */
398 inline Vector& Vector::multAdd(Real x, const SVector& vec)
399 {
400  assert(vec.dim() <= dim());
401 
402  for(int i = vec.size() - 1; i >= 0; --i)
403  val[vec.m_elem[i].idx] += x * vec.m_elem[i].val;
404 
405  return *this;
406 }
407 
408 } // namespace soplex
409 #endif // _SVECTOR_H_
410 
411 //-----------------------------------------------------------------------------
412 //Emacs Local Variables:
413 //Emacs mode:c++
414 //Emacs c-basic-offset:3
415 //Emacs tab-width:8
416 //Emacs indent-tabs-mode:nil
417 //Emacs End:
418 //-----------------------------------------------------------------------------